k uchun yechish
k=5
Viktorina
Linear Equation
5xshash muammolar:
\frac { k + 6 } { 9 k + 10 } = \frac { k + 5 } { 9 k + 5 }
Baham ko'rish
Klipbordga nusxa olish
\left(9k+5\right)\left(k+6\right)=\left(9k+10\right)\left(k+5\right)
k qiymati -\frac{10}{9},-\frac{5}{9} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(9k+5\right)\left(9k+10\right) ga, 9k+10,9k+5 ning eng kichik karralisiga ko‘paytiring.
9k^{2}+59k+30=\left(9k+10\right)\left(k+5\right)
9k+5 ga k+6 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
9k^{2}+59k+30=9k^{2}+55k+50
9k+10 ga k+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
9k^{2}+59k+30-9k^{2}=55k+50
Ikkala tarafdan 9k^{2} ni ayirish.
59k+30=55k+50
0 ni olish uchun 9k^{2} va -9k^{2} ni birlashtirish.
59k+30-55k=50
Ikkala tarafdan 55k ni ayirish.
4k+30=50
4k ni olish uchun 59k va -55k ni birlashtirish.
4k=50-30
Ikkala tarafdan 30 ni ayirish.
4k=20
20 olish uchun 50 dan 30 ni ayirish.
k=\frac{20}{4}
Ikki tarafini 4 ga bo‘ling.
k=5
5 ni olish uchun 20 ni 4 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}