j uchun yechish
j=-1
Baham ko'rish
Klipbordga nusxa olish
\left(j+3\right)\left(j-8\right)=\left(j+10\right)\left(j-1\right)
j qiymati -10,-3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(j+3\right)\left(j+10\right) ga, j+10,j+3 ning eng kichik karralisiga ko‘paytiring.
j^{2}-5j-24=\left(j+10\right)\left(j-1\right)
j+3 ga j-8 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
j^{2}-5j-24=j^{2}+9j-10
j+10 ga j-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
j^{2}-5j-24-j^{2}=9j-10
Ikkala tarafdan j^{2} ni ayirish.
-5j-24=9j-10
0 ni olish uchun j^{2} va -j^{2} ni birlashtirish.
-5j-24-9j=-10
Ikkala tarafdan 9j ni ayirish.
-14j-24=-10
-14j ni olish uchun -5j va -9j ni birlashtirish.
-14j=-10+24
24 ni ikki tarafga qo’shing.
-14j=14
14 olish uchun -10 va 24'ni qo'shing.
j=\frac{14}{-14}
Ikki tarafini -14 ga bo‘ling.
j=-1
-1 ni olish uchun 14 ni -14 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}