Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{i\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 2-3i.
\frac{i\left(2-3i\right)}{2^{2}-3^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{i\left(2-3i\right)}{13}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{2i-3i^{2}}{13}
i ni 2-3i marotabaga ko'paytirish.
\frac{2i-3\left(-1\right)}{13}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{3+2i}{13}
2i-3\left(-1\right) ichidagi ko‘paytirishlarni bajaring. Shartlarni qayta saralash.
\frac{3}{13}+\frac{2}{13}i
\frac{3}{13}+\frac{2}{13}i ni olish uchun 3+2i ni 13 ga bo‘ling.
Re(\frac{i\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)})
\frac{i}{2+3i}ning surat va maxrajini murakkab tutash maxraj 2-3i bilan ko‘paytiring.
Re(\frac{i\left(2-3i\right)}{2^{2}-3^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{i\left(2-3i\right)}{13})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{2i-3i^{2}}{13})
i ni 2-3i marotabaga ko'paytirish.
Re(\frac{2i-3\left(-1\right)}{13})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{3+2i}{13})
2i-3\left(-1\right) ichidagi ko‘paytirishlarni bajaring. Shartlarni qayta saralash.
Re(\frac{3}{13}+\frac{2}{13}i)
\frac{3}{13}+\frac{2}{13}i ni olish uchun 3+2i ni 13 ga bo‘ling.
\frac{3}{13}
\frac{3}{13}+\frac{2}{13}i ning real qismi – \frac{3}{13}.