Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{\left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right)}
\frac{i\sqrt{2}-5}{i+\sqrt{2}} maxrajini i-\sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{i^{2}-\left(\sqrt{2}\right)^{2}}
Hisoblang: \left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-1-2}
i kvadratini chiqarish. \sqrt{2} kvadratini chiqarish.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-3}
-3 olish uchun -1 dan 2 ni ayirish.
\frac{-\sqrt{2}-i\left(\sqrt{2}\right)^{2}-5i+5\sqrt{2}}{-3}
i\sqrt{2}-5 ifodaning har bir elementini i-\sqrt{2} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{-\sqrt{2}-i\times 2-5i+5\sqrt{2}}{-3}
\sqrt{2} kvadrati – 2.
\frac{-\sqrt{2}-2i-5i+5\sqrt{2}}{-3}
-2i hosil qilish uchun -i va 2 ni ko'paytirish.
\frac{-\sqrt{2}-7i+5\sqrt{2}}{-3}
-7i olish uchun -2i dan 5i ni ayirish.
\frac{4\sqrt{2}-7i}{-3}
4\sqrt{2} ni olish uchun -\sqrt{2} va 5\sqrt{2} ni birlashtirish.
\frac{-4\sqrt{2}+7i}{3}
Surat va maxrajini -1 ga ko‘paytiring.