Baholash
-\frac{4\sqrt{2}}{3}+\frac{7}{3}i\approx -1,885618083+2,333333333i
Ashyoviy qism
-\frac{4 \sqrt{2}}{3} = -1,885618083164127
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{\left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right)}
\frac{i\sqrt{2}-5}{i+\sqrt{2}} maxrajini i-\sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{i^{2}-\left(\sqrt{2}\right)^{2}}
Hisoblang: \left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-1-2}
i kvadratini chiqarish. \sqrt{2} kvadratini chiqarish.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-3}
-3 olish uchun -1 dan 2 ni ayirish.
\frac{-\sqrt{2}-i\left(\sqrt{2}\right)^{2}-5i+5\sqrt{2}}{-3}
i\sqrt{2}-5 ifodaning har bir elementini i-\sqrt{2} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{-\sqrt{2}-i\times 2-5i+5\sqrt{2}}{-3}
\sqrt{2} kvadrati – 2.
\frac{-\sqrt{2}-2i-5i+5\sqrt{2}}{-3}
-2i hosil qilish uchun -i va 2 ni ko'paytirish.
\frac{-\sqrt{2}-7i+5\sqrt{2}}{-3}
-7i olish uchun -2i dan 5i ni ayirish.
\frac{4\sqrt{2}-7i}{-3}
4\sqrt{2} ni olish uchun -\sqrt{2} va 5\sqrt{2} ni birlashtirish.
\frac{-4\sqrt{2}+7i}{3}
Surat va maxrajini -1 ga ko‘paytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}