Asosiy tarkibga oʻtish
f, g uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3f=g
Birinchi tenglamani yeching. Tenglamaning ikkala tarafini 33 ga, 11,33 ning eng kichik karralisiga ko‘paytiring.
f=\frac{1}{3}g
Ikki tarafini 3 ga bo‘ling.
\frac{1}{3}g+g=40
\frac{g}{3} ni f uchun boshqa tenglamada almashtirish, f+g=40.
\frac{4}{3}g=40
\frac{g}{3} ni g ga qo'shish.
g=30
Tenglamaning ikki tarafini \frac{4}{3} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
f=\frac{1}{3}\times 30
30 ni g uchun f=\frac{1}{3}g da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz f ni bevosita yecha olasiz.
f=10
\frac{1}{3} ni 30 marotabaga ko'paytirish.
f=10,g=30
Tizim hal qilindi.
3f=g
Birinchi tenglamani yeching. Tenglamaning ikkala tarafini 33 ga, 11,33 ning eng kichik karralisiga ko‘paytiring.
3f-g=0
Ikkala tarafdan g ni ayirish.
3f-g=0,f+g=40
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}3&-1\\1&1\end{matrix}\right)\left(\begin{matrix}f\\g\end{matrix}\right)=\left(\begin{matrix}0\\40\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&1\end{matrix}\right)\left(\begin{matrix}f\\g\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\40\end{matrix}\right)
\left(\begin{matrix}3&-1\\1&1\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}f\\g\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\40\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}f\\g\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\40\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}f\\g\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-1\right)}&-\frac{-1}{3-\left(-1\right)}\\-\frac{1}{3-\left(-1\right)}&\frac{3}{3-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}0\\40\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}f\\g\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{4}&\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}0\\40\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}f\\g\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 40\\\frac{3}{4}\times 40\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}f\\g\end{matrix}\right)=\left(\begin{matrix}10\\30\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
f=10,g=30
f va g matritsa elementlarini chiqarib olish.
3f=g
Birinchi tenglamani yeching. Tenglamaning ikkala tarafini 33 ga, 11,33 ning eng kichik karralisiga ko‘paytiring.
3f-g=0
Ikkala tarafdan g ni ayirish.
3f-g=0,f+g=40
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
3f-g=0,3f+3g=3\times 40
3f va f ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 1 ga va ikkinchining har bir tarafidagi barcha shartlarni 3 ga ko'paytiring.
3f-g=0,3f+3g=120
Qisqartirish.
3f-3f-g-3g=-120
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 3f-g=0 dan 3f+3g=120 ni ayirish.
-g-3g=-120
3f ni -3f ga qo'shish. 3f va -3f shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-4g=-120
-g ni -3g ga qo'shish.
g=30
Ikki tarafini -4 ga bo‘ling.
f+30=40
30 ni g uchun f+g=40 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz f ni bevosita yecha olasiz.
f=10
Tenglamaning ikkala tarafidan 30 ni ayirish.
f=10,g=30
Tizim hal qilindi.