Baholash
\frac{2\left(3-x\right)}{x^{3}}
x ga nisbatan hosilani topish
\frac{2\left(2x-9\right)}{x^{4}}
Baham ko'rish
Klipbordga nusxa olish
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{x^{2}}-\frac{3}{x^{2}})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x va x^{2} ning eng kichik umumiy karralisi x^{2}. \frac{2}{x} ni \frac{x}{x} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-3}{x^{2}})
\frac{2x}{x^{2}} va \frac{3}{x^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}-3)-\left(2x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})}{\left(x^{2}\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{x^{2}\times 2x^{1-1}-\left(2x^{1}-3\right)\times 2x^{2-1}}{\left(x^{2}\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{x^{2}\times 2x^{0}-\left(2x^{1}-3\right)\times 2x^{1}}{\left(x^{2}\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{x^{2}\times 2x^{0}-\left(2x^{1}\times 2x^{1}-3\times 2x^{1}\right)}{\left(x^{2}\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{2x^{2}-\left(2\times 2x^{1+1}-3\times 2x^{1}\right)}{\left(x^{2}\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{2x^{2}-\left(4x^{2}-6x^{1}\right)}{\left(x^{2}\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{2x^{2}-4x^{2}-\left(-6x^{1}\right)}{\left(x^{2}\right)^{2}}
Keraksiz qavslarni olib tashlash.
\frac{\left(2-4\right)x^{2}-\left(-6x^{1}\right)}{\left(x^{2}\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-2x^{2}-\left(-6x^{1}\right)}{\left(x^{2}\right)^{2}}
2 dan 4 ni ayirish.
\frac{2x\left(-x^{1}-\left(-3x^{0}\right)\right)}{\left(x^{2}\right)^{2}}
2x omili.
\frac{2x\left(-x^{1}-\left(-3x^{0}\right)\right)}{x^{2\times 2}}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring.
\frac{2x\left(-x^{1}-\left(-3x^{0}\right)\right)}{x^{4}}
2 ni 2 marotabaga ko'paytirish.
\frac{2\left(-x^{1}-\left(-3x^{0}\right)\right)}{x^{4-1}}
Ayni asosning daraja ko‘rsatkichini bo‘lish uchun suratning darajasini maxraj darajasiga bo‘ling.
\frac{2\left(-x^{1}-\left(-3x^{0}\right)\right)}{x^{3}}
4 dan 1 ni ayirish.
\frac{2\left(-x-\left(-3x^{0}\right)\right)}{x^{3}}
Har qanday t sharti uchun t^{1}=t.
\frac{2\left(-x-\left(-3\right)\right)}{x^{3}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}