Baholash
c+d
d ga nisbatan hosilani topish
1
Baham ko'rish
Klipbordga nusxa olish
\frac{-d^{2}}{c-d}+\frac{c^{2}}{c-d}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. d-c va c-d ning eng kichik umumiy karralisi c-d. \frac{d^{2}}{d-c} ni \frac{-1}{-1} marotabaga ko'paytirish.
\frac{-d^{2}+c^{2}}{c-d}
\frac{-d^{2}}{c-d} va \frac{c^{2}}{c-d} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\left(-c+d\right)\left(-c-d\right)}{c-d}
\frac{-d^{2}+c^{2}}{c-d} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{-\left(c-d\right)\left(-c-d\right)}{c-d}
d-c mislodagi manfiy ishorani chiqarib tashlang.
-\left(-c-d\right)
Surat va maxrajdagi ikkala c-d ni qisqartiring.
c+d
Ifodani kengaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}