Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{c+12}{\left(12-c\right)^{2}}+\frac{12}{c\left(-c+12\right)}
Faktor: 12c-c^{2}.
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}+\frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(12-c\right)^{2} va c\left(-c+12\right) ning eng kichik umumiy karralisi c\left(-c+12\right)\left(-c+12\right)^{2}. \frac{c+12}{\left(12-c\right)^{2}} ni \frac{c\left(-c+12\right)}{c\left(-c+12\right)} marotabaga ko'paytirish. \frac{12}{c\left(-c+12\right)} ni \frac{\left(-c+12\right)^{2}}{\left(-c+12\right)^{2}} marotabaga ko'paytirish.
\frac{\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}} va \frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(-c+12\right)\left(c^{2}+144\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{c^{2}+144}{c\left(-c+12\right)^{2}}
Surat va maxrajdagi ikkala -c+12 ni qisqartiring.
\frac{c^{2}+144}{c^{3}-24c^{2}+144c}
c\left(-c+12\right)^{2} ni kengaytirish.
\frac{c+12}{\left(12-c\right)^{2}}+\frac{12}{c\left(-c+12\right)}
Faktor: 12c-c^{2}.
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}+\frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(12-c\right)^{2} va c\left(-c+12\right) ning eng kichik umumiy karralisi c\left(-c+12\right)\left(-c+12\right)^{2}. \frac{c+12}{\left(12-c\right)^{2}} ni \frac{c\left(-c+12\right)}{c\left(-c+12\right)} marotabaga ko'paytirish. \frac{12}{c\left(-c+12\right)} ni \frac{\left(-c+12\right)^{2}}{\left(-c+12\right)^{2}} marotabaga ko'paytirish.
\frac{\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}} va \frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(-c+12\right)\left(c^{2}+144\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{c^{2}+144}{c\left(-c+12\right)^{2}}
Surat va maxrajdagi ikkala -c+12 ni qisqartiring.
\frac{c^{2}+144}{c^{3}-24c^{2}+144c}
c\left(-c+12\right)^{2} ni kengaytirish.