b uchun yechish
b=-2
b = \frac{3}{2} = 1\frac{1}{2} = 1,5
Baham ko'rish
Klipbordga nusxa olish
\left(b-3\right)\left(b-2\right)-5+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
b qiymati 1,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(b-3\right)\left(b-1\right) ga, b-1,b^{2}-4b+3,3-b ning eng kichik karralisiga ko‘paytiring.
b^{2}-5b+6-5+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
b-3 ga b-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
b^{2}-5b+1+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
1 olish uchun 6 dan 5 ni ayirish.
b^{2}-5b+1+b^{2}-4b+3=\left(1-b\right)\times 10
b-3 ga b-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2b^{2}-5b+1-4b+3=\left(1-b\right)\times 10
2b^{2} ni olish uchun b^{2} va b^{2} ni birlashtirish.
2b^{2}-9b+1+3=\left(1-b\right)\times 10
-9b ni olish uchun -5b va -4b ni birlashtirish.
2b^{2}-9b+4=\left(1-b\right)\times 10
4 olish uchun 1 va 3'ni qo'shing.
2b^{2}-9b+4=10-10b
1-b ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2b^{2}-9b+4-10=-10b
Ikkala tarafdan 10 ni ayirish.
2b^{2}-9b-6=-10b
-6 olish uchun 4 dan 10 ni ayirish.
2b^{2}-9b-6+10b=0
10b ni ikki tarafga qo’shing.
2b^{2}+b-6=0
b ni olish uchun -9b va 10b ni birlashtirish.
a+b=1 ab=2\left(-6\right)=-12
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 2b^{2}+ab+bb-6 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,12 -2,6 -3,4
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -12-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+12=11 -2+6=4 -3+4=1
Har bir juftlik yigʻindisini hisoblang.
a=-3 b=4
Yechim – 1 yigʻindisini beruvchi juftlik.
\left(2b^{2}-3b\right)+\left(4b-6\right)
2b^{2}+b-6 ni \left(2b^{2}-3b\right)+\left(4b-6\right) sifatida qaytadan yozish.
b\left(2b-3\right)+2\left(2b-3\right)
Birinchi guruhda b ni va ikkinchi guruhda 2 ni faktordan chiqaring.
\left(2b-3\right)\left(b+2\right)
Distributiv funktsiyasidan foydalangan holda 2b-3 umumiy terminini chiqaring.
b=\frac{3}{2} b=-2
Tenglamani yechish uchun 2b-3=0 va b+2=0 ni yeching.
\left(b-3\right)\left(b-2\right)-5+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
b qiymati 1,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(b-3\right)\left(b-1\right) ga, b-1,b^{2}-4b+3,3-b ning eng kichik karralisiga ko‘paytiring.
b^{2}-5b+6-5+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
b-3 ga b-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
b^{2}-5b+1+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
1 olish uchun 6 dan 5 ni ayirish.
b^{2}-5b+1+b^{2}-4b+3=\left(1-b\right)\times 10
b-3 ga b-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2b^{2}-5b+1-4b+3=\left(1-b\right)\times 10
2b^{2} ni olish uchun b^{2} va b^{2} ni birlashtirish.
2b^{2}-9b+1+3=\left(1-b\right)\times 10
-9b ni olish uchun -5b va -4b ni birlashtirish.
2b^{2}-9b+4=\left(1-b\right)\times 10
4 olish uchun 1 va 3'ni qo'shing.
2b^{2}-9b+4=10-10b
1-b ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2b^{2}-9b+4-10=-10b
Ikkala tarafdan 10 ni ayirish.
2b^{2}-9b-6=-10b
-6 olish uchun 4 dan 10 ni ayirish.
2b^{2}-9b-6+10b=0
10b ni ikki tarafga qo’shing.
2b^{2}+b-6=0
b ni olish uchun -9b va 10b ni birlashtirish.
b=\frac{-1±\sqrt{1^{2}-4\times 2\left(-6\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 1 ni b va -6 ni c bilan almashtiring.
b=\frac{-1±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
1 kvadratini chiqarish.
b=\frac{-1±\sqrt{1-8\left(-6\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
b=\frac{-1±\sqrt{1+48}}{2\times 2}
-8 ni -6 marotabaga ko'paytirish.
b=\frac{-1±\sqrt{49}}{2\times 2}
1 ni 48 ga qo'shish.
b=\frac{-1±7}{2\times 2}
49 ning kvadrat ildizini chiqarish.
b=\frac{-1±7}{4}
2 ni 2 marotabaga ko'paytirish.
b=\frac{6}{4}
b=\frac{-1±7}{4} tenglamasini yeching, bunda ± musbat. -1 ni 7 ga qo'shish.
b=\frac{3}{2}
\frac{6}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
b=-\frac{8}{4}
b=\frac{-1±7}{4} tenglamasini yeching, bunda ± manfiy. -1 dan 7 ni ayirish.
b=-2
-8 ni 4 ga bo'lish.
b=\frac{3}{2} b=-2
Tenglama yechildi.
\left(b-3\right)\left(b-2\right)-5+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
b qiymati 1,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(b-3\right)\left(b-1\right) ga, b-1,b^{2}-4b+3,3-b ning eng kichik karralisiga ko‘paytiring.
b^{2}-5b+6-5+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
b-3 ga b-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
b^{2}-5b+1+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
1 olish uchun 6 dan 5 ni ayirish.
b^{2}-5b+1+b^{2}-4b+3=\left(1-b\right)\times 10
b-3 ga b-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2b^{2}-5b+1-4b+3=\left(1-b\right)\times 10
2b^{2} ni olish uchun b^{2} va b^{2} ni birlashtirish.
2b^{2}-9b+1+3=\left(1-b\right)\times 10
-9b ni olish uchun -5b va -4b ni birlashtirish.
2b^{2}-9b+4=\left(1-b\right)\times 10
4 olish uchun 1 va 3'ni qo'shing.
2b^{2}-9b+4=10-10b
1-b ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2b^{2}-9b+4+10b=10
10b ni ikki tarafga qo’shing.
2b^{2}+b+4=10
b ni olish uchun -9b va 10b ni birlashtirish.
2b^{2}+b=10-4
Ikkala tarafdan 4 ni ayirish.
2b^{2}+b=6
6 olish uchun 10 dan 4 ni ayirish.
\frac{2b^{2}+b}{2}=\frac{6}{2}
Ikki tarafini 2 ga bo‘ling.
b^{2}+\frac{1}{2}b=\frac{6}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
b^{2}+\frac{1}{2}b=3
6 ni 2 ga bo'lish.
b^{2}+\frac{1}{2}b+\left(\frac{1}{4}\right)^{2}=3+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{4} olish uchun. Keyin, \frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
b^{2}+\frac{1}{2}b+\frac{1}{16}=3+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{4} kvadratini chiqarish.
b^{2}+\frac{1}{2}b+\frac{1}{16}=\frac{49}{16}
3 ni \frac{1}{16} ga qo'shish.
\left(b+\frac{1}{4}\right)^{2}=\frac{49}{16}
b^{2}+\frac{1}{2}b+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(b+\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b+\frac{1}{4}=\frac{7}{4} b+\frac{1}{4}=-\frac{7}{4}
Qisqartirish.
b=\frac{3}{2} b=-2
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}