Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\frac{b}{a-b}}{\frac{aa}{a\left(a-b\right)}-\frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a-b va a ning eng kichik umumiy karralisi a\left(a-b\right). \frac{a}{a-b} ni \frac{a}{a} marotabaga ko'paytirish. \frac{a+b}{a} ni \frac{a-b}{a-b} marotabaga ko'paytirish.
\frac{\frac{b}{a-b}}{\frac{aa-\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}}
\frac{aa}{a\left(a-b\right)} va \frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{b}{a-b}}{\frac{a^{2}-a^{2}+ab-ba+b^{2}}{a\left(a-b\right)}}
aa-\left(a+b\right)\left(a-b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{b}{a-b}}{\frac{b^{2}}{a\left(a-b\right)}}
a^{2}-a^{2}+ab-ba+b^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{ba\left(a-b\right)}{\left(a-b\right)b^{2}}
\frac{b}{a-b} ni \frac{b^{2}}{a\left(a-b\right)} ga bo'lish \frac{b}{a-b} ga k'paytirish \frac{b^{2}}{a\left(a-b\right)} ga qaytarish.
\frac{a}{b}
Surat va maxrajdagi ikkala b\left(a-b\right) ni qisqartiring.
\frac{\frac{b}{a-b}}{\frac{aa}{a\left(a-b\right)}-\frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a-b va a ning eng kichik umumiy karralisi a\left(a-b\right). \frac{a}{a-b} ni \frac{a}{a} marotabaga ko'paytirish. \frac{a+b}{a} ni \frac{a-b}{a-b} marotabaga ko'paytirish.
\frac{\frac{b}{a-b}}{\frac{aa-\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}}
\frac{aa}{a\left(a-b\right)} va \frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{b}{a-b}}{\frac{a^{2}-a^{2}+ab-ba+b^{2}}{a\left(a-b\right)}}
aa-\left(a+b\right)\left(a-b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{b}{a-b}}{\frac{b^{2}}{a\left(a-b\right)}}
a^{2}-a^{2}+ab-ba+b^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{ba\left(a-b\right)}{\left(a-b\right)b^{2}}
\frac{b}{a-b} ni \frac{b^{2}}{a\left(a-b\right)} ga bo'lish \frac{b}{a-b} ga k'paytirish \frac{b^{2}}{a\left(a-b\right)} ga qaytarish.
\frac{a}{b}
Surat va maxrajdagi ikkala b\left(a-b\right) ni qisqartiring.