Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Faktor: b^{4}-1. Faktor: 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) va \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) ning eng kichik umumiy karralisi \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} ni \frac{-1}{-1} marotabaga ko'paytirish.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} va \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2+3\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2-3 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{1}{b^{2}+1}
Surat va maxrajdagi ikkala \left(b-1\right)\left(b+1\right) ni qisqartiring.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Faktor: b^{4}-1. Faktor: 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) va \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) ning eng kichik umumiy karralisi \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} ni \frac{-1}{-1} marotabaga ko'paytirish.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} va \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2+3\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2-3 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{1}{b^{2}+1}
Surat va maxrajdagi ikkala \left(b-1\right)\left(b+1\right) ni qisqartiring.