Baholash
\frac{1}{b^{2}+1}
Kengaytirish
\frac{1}{b^{2}+1}
Baham ko'rish
Klipbordga nusxa olish
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Faktor: b^{4}-1. Faktor: 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) va \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) ning eng kichik umumiy karralisi \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} ni \frac{-1}{-1} marotabaga ko'paytirish.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} va \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2+3\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2-3 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{1}{b^{2}+1}
Surat va maxrajdagi ikkala \left(b-1\right)\left(b+1\right) ni qisqartiring.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Faktor: b^{4}-1. Faktor: 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) va \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) ning eng kichik umumiy karralisi \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} ni \frac{-1}{-1} marotabaga ko'paytirish.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} va \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2+3\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
b^{2}+2-3 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{1}{b^{2}+1}
Surat va maxrajdagi ikkala \left(b-1\right)\left(b+1\right) ni qisqartiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}