Baholash
\frac{10\left(b+3\right)\left(2b+7\right)}{21a}
Kengaytirish
\frac{10\left(2b^{2}+13b+21\right)}{21a}
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(b+3\right)\left(20b+70\right)}{\left(a+2a\right)\times 7}
\frac{b+3}{a+2a} ni \frac{7}{20b+70} ga bo'lish \frac{b+3}{a+2a} ga k'paytirish \frac{7}{20b+70} ga qaytarish.
\frac{\left(b+3\right)\left(20b+70\right)}{3a\times 7}
3a ni olish uchun a va 2a ni birlashtirish.
\frac{\left(b+3\right)\left(20b+70\right)}{21a}
21 hosil qilish uchun 3 va 7 ni ko'paytirish.
\frac{20b^{2}+70b+60b+210}{21a}
b+3 ifodaning har bir elementini 20b+70 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{20b^{2}+130b+210}{21a}
130b ni olish uchun 70b va 60b ni birlashtirish.
\frac{\left(b+3\right)\left(20b+70\right)}{\left(a+2a\right)\times 7}
\frac{b+3}{a+2a} ni \frac{7}{20b+70} ga bo'lish \frac{b+3}{a+2a} ga k'paytirish \frac{7}{20b+70} ga qaytarish.
\frac{\left(b+3\right)\left(20b+70\right)}{3a\times 7}
3a ni olish uchun a va 2a ni birlashtirish.
\frac{\left(b+3\right)\left(20b+70\right)}{21a}
21 hosil qilish uchun 3 va 7 ni ko'paytirish.
\frac{20b^{2}+70b+60b+210}{21a}
b+3 ifodaning har bir elementini 20b+70 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{20b^{2}+130b+210}{21a}
130b ni olish uchun 70b va 60b ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}