a uchun yechish (complex solution)
\left\{\begin{matrix}a=-\frac{-3cx+2b-3d}{2x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&b=\frac{3d}{2}\text{ and }x=0\end{matrix}\right,
a uchun yechish
\left\{\begin{matrix}a=-\frac{-3cx+2b-3d}{2x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&b=\frac{3d}{2}\text{ and }x=0\end{matrix}\right,
b uchun yechish
b=-ax+\frac{3cx}{2}+\frac{3d}{2}
Grafik
Baham ko'rish
Klipbordga nusxa olish
2\left(ax+b\right)=3\left(cx+d\right)
Tenglamaning ikkala tarafini 6 ga, 3,2 ning eng kichik karralisiga ko‘paytiring.
2ax+2b=3\left(cx+d\right)
2 ga ax+b ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2ax+2b=3cx+3d
3 ga cx+d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2ax=3cx+3d-2b
Ikkala tarafdan 2b ni ayirish.
2xa=3cx+3d-2b
Tenglama standart shaklda.
\frac{2xa}{2x}=\frac{3cx+3d-2b}{2x}
Ikki tarafini 2x ga bo‘ling.
a=\frac{3cx+3d-2b}{2x}
2x ga bo'lish 2x ga ko'paytirishni bekor qiladi.
2\left(ax+b\right)=3\left(cx+d\right)
Tenglamaning ikkala tarafini 6 ga, 3,2 ning eng kichik karralisiga ko‘paytiring.
2ax+2b=3\left(cx+d\right)
2 ga ax+b ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2ax+2b=3cx+3d
3 ga cx+d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2ax=3cx+3d-2b
Ikkala tarafdan 2b ni ayirish.
2xa=3cx+3d-2b
Tenglama standart shaklda.
\frac{2xa}{2x}=\frac{3cx+3d-2b}{2x}
Ikki tarafini 2x ga bo‘ling.
a=\frac{3cx+3d-2b}{2x}
2x ga bo'lish 2x ga ko'paytirishni bekor qiladi.
2\left(ax+b\right)=3\left(cx+d\right)
Tenglamaning ikkala tarafini 6 ga, 3,2 ning eng kichik karralisiga ko‘paytiring.
2ax+2b=3\left(cx+d\right)
2 ga ax+b ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2ax+2b=3cx+3d
3 ga cx+d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2b=3cx+3d-2ax
Ikkala tarafdan 2ax ni ayirish.
2b=3cx-2ax+3d
Tenglama standart shaklda.
\frac{2b}{2}=\frac{3cx-2ax+3d}{2}
Ikki tarafini 2 ga bo‘ling.
b=\frac{3cx-2ax+3d}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
b=-ax+\frac{3cx}{2}+\frac{3d}{2}
3cx+3d-2ax ni 2 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}