Asosiy tarkibga oʻtish
a uchun yechish (complex solution)
Tick mark Image
a uchun yechish
Tick mark Image
b uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2\left(ax+b\right)=3\left(cx+d\right)
Tenglamaning ikkala tarafini 6 ga, 3,2 ning eng kichik karralisiga ko‘paytiring.
2ax+2b=3\left(cx+d\right)
2 ga ax+b ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2ax+2b=3cx+3d
3 ga cx+d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2ax=3cx+3d-2b
Ikkala tarafdan 2b ni ayirish.
2xa=3cx+3d-2b
Tenglama standart shaklda.
\frac{2xa}{2x}=\frac{3cx+3d-2b}{2x}
Ikki tarafini 2x ga bo‘ling.
a=\frac{3cx+3d-2b}{2x}
2x ga bo'lish 2x ga ko'paytirishni bekor qiladi.
2\left(ax+b\right)=3\left(cx+d\right)
Tenglamaning ikkala tarafini 6 ga, 3,2 ning eng kichik karralisiga ko‘paytiring.
2ax+2b=3\left(cx+d\right)
2 ga ax+b ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2ax+2b=3cx+3d
3 ga cx+d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2ax=3cx+3d-2b
Ikkala tarafdan 2b ni ayirish.
2xa=3cx+3d-2b
Tenglama standart shaklda.
\frac{2xa}{2x}=\frac{3cx+3d-2b}{2x}
Ikki tarafini 2x ga bo‘ling.
a=\frac{3cx+3d-2b}{2x}
2x ga bo'lish 2x ga ko'paytirishni bekor qiladi.
2\left(ax+b\right)=3\left(cx+d\right)
Tenglamaning ikkala tarafini 6 ga, 3,2 ning eng kichik karralisiga ko‘paytiring.
2ax+2b=3\left(cx+d\right)
2 ga ax+b ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2ax+2b=3cx+3d
3 ga cx+d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2b=3cx+3d-2ax
Ikkala tarafdan 2ax ni ayirish.
2b=3cx-2ax+3d
Tenglama standart shaklda.
\frac{2b}{2}=\frac{3cx-2ax+3d}{2}
Ikki tarafini 2 ga bo‘ling.
b=\frac{3cx-2ax+3d}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
b=-ax+\frac{3cx}{2}+\frac{3d}{2}
3cx+3d-2ax ni 2 ga bo'lish.