Asosiy tarkibga oʻtish
a uchun yechish (complex solution)
Tick mark Image
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a-y+ax^{2}y=ax^{2}\left(\cos(x)\right)^{2}
a qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini ax^{2} ga ko'paytirish.
a-y+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=0
Ikkala tarafdan ax^{2}\left(\cos(x)\right)^{2} ni ayirish.
a+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=y
y ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\left(1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}\right)a=y
a'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a=y
Tenglama standart shaklda.
\frac{\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Ikki tarafini 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} ga bo‘ling.
a=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} ga bo'lish 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} ga ko'paytirishni bekor qiladi.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}
y ni 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} ga bo'lish.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}\text{, }a\neq 0
a qiymati 0 teng bo‘lmaydi.
a-y+ax^{2}y=ax^{2}\left(\cos(x)\right)^{2}
a qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini ax^{2} ga ko'paytirish.
a-y+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=0
Ikkala tarafdan ax^{2}\left(\cos(x)\right)^{2} ni ayirish.
a+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=y
y ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\left(1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}\right)a=y
a'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a=y
Tenglama standart shaklda.
\frac{\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Ikki tarafini 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} ga bo‘ling.
a=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} ga bo'lish 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} ga ko'paytirishni bekor qiladi.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}
y ni 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} ga bo'lish.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}\text{, }a\neq 0
a qiymati 0 teng bo‘lmaydi.