Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{a}{b\left(a-b\right)}+\frac{b}{a\left(a-b\right)}+\frac{a+b}{ab}
Faktor: ab-b^{2}. Faktor: a^{2}-ab.
\frac{aa}{ab\left(a-b\right)}+\frac{bb}{ab\left(a-b\right)}+\frac{a+b}{ab}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. b\left(a-b\right) va a\left(a-b\right) ning eng kichik umumiy karralisi ab\left(a-b\right). \frac{a}{b\left(a-b\right)} ni \frac{a}{a} marotabaga ko'paytirish. \frac{b}{a\left(a-b\right)} ni \frac{b}{b} marotabaga ko'paytirish.
\frac{aa+bb}{ab\left(a-b\right)}+\frac{a+b}{ab}
\frac{aa}{ab\left(a-b\right)} va \frac{bb}{ab\left(a-b\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{a^{2}+b^{2}}{ab\left(a-b\right)}+\frac{a+b}{ab}
aa+bb ichidagi ko‘paytirishlarni bajaring.
\frac{a^{2}+b^{2}}{ab\left(a-b\right)}+\frac{\left(a+b\right)\left(a-b\right)}{ab\left(a-b\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. ab\left(a-b\right) va ab ning eng kichik umumiy karralisi ab\left(a-b\right). \frac{a+b}{ab} ni \frac{a-b}{a-b} marotabaga ko'paytirish.
\frac{a^{2}+b^{2}+\left(a+b\right)\left(a-b\right)}{ab\left(a-b\right)}
\frac{a^{2}+b^{2}}{ab\left(a-b\right)} va \frac{\left(a+b\right)\left(a-b\right)}{ab\left(a-b\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{a^{2}+b^{2}+a^{2}-ab+ab-b^{2}}{ab\left(a-b\right)}
a^{2}+b^{2}+\left(a+b\right)\left(a-b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{2a^{2}}{ab\left(a-b\right)}
a^{2}+b^{2}+a^{2}-ab+ab-b^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{2a}{b\left(a-b\right)}
Surat va maxrajdagi ikkala a ni qisqartiring.
\frac{2a}{ab-b^{2}}
b\left(a-b\right) ni kengaytirish.
\frac{a}{b\left(a-b\right)}+\frac{b}{a\left(a-b\right)}+\frac{a+b}{ab}
Faktor: ab-b^{2}. Faktor: a^{2}-ab.
\frac{aa}{ab\left(a-b\right)}+\frac{bb}{ab\left(a-b\right)}+\frac{a+b}{ab}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. b\left(a-b\right) va a\left(a-b\right) ning eng kichik umumiy karralisi ab\left(a-b\right). \frac{a}{b\left(a-b\right)} ni \frac{a}{a} marotabaga ko'paytirish. \frac{b}{a\left(a-b\right)} ni \frac{b}{b} marotabaga ko'paytirish.
\frac{aa+bb}{ab\left(a-b\right)}+\frac{a+b}{ab}
\frac{aa}{ab\left(a-b\right)} va \frac{bb}{ab\left(a-b\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{a^{2}+b^{2}}{ab\left(a-b\right)}+\frac{a+b}{ab}
aa+bb ichidagi ko‘paytirishlarni bajaring.
\frac{a^{2}+b^{2}}{ab\left(a-b\right)}+\frac{\left(a+b\right)\left(a-b\right)}{ab\left(a-b\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. ab\left(a-b\right) va ab ning eng kichik umumiy karralisi ab\left(a-b\right). \frac{a+b}{ab} ni \frac{a-b}{a-b} marotabaga ko'paytirish.
\frac{a^{2}+b^{2}+\left(a+b\right)\left(a-b\right)}{ab\left(a-b\right)}
\frac{a^{2}+b^{2}}{ab\left(a-b\right)} va \frac{\left(a+b\right)\left(a-b\right)}{ab\left(a-b\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{a^{2}+b^{2}+a^{2}-ab+ab-b^{2}}{ab\left(a-b\right)}
a^{2}+b^{2}+\left(a+b\right)\left(a-b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{2a^{2}}{ab\left(a-b\right)}
a^{2}+b^{2}+a^{2}-ab+ab-b^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{2a}{b\left(a-b\right)}
Surat va maxrajdagi ikkala a ni qisqartiring.
\frac{2a}{ab-b^{2}}
b\left(a-b\right) ni kengaytirish.