Baholash
-a^{3}+\frac{2a^{2}}{3}+\frac{a}{2}
Omil
-a\left(a-\left(-\frac{\sqrt{22}}{6}+\frac{1}{3}\right)\right)\left(a-\left(\frac{\sqrt{22}}{6}+\frac{1}{3}\right)\right)
Baham ko'rish
Klipbordga nusxa olish
\frac{a}{2}+\frac{2a^{2}}{3}-a^{3}
4 va 4 ni qisqartiring.
\frac{3a}{6}+\frac{2\times 2a^{2}}{6}-a^{3}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2 va 3 ning eng kichik umumiy karralisi 6. \frac{a}{2} ni \frac{3}{3} marotabaga ko'paytirish. \frac{2a^{2}}{3} ni \frac{2}{2} marotabaga ko'paytirish.
\frac{3a+2\times 2a^{2}}{6}-a^{3}
\frac{3a}{6} va \frac{2\times 2a^{2}}{6} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{3a+4a^{2}}{6}-a^{3}
3a+2\times 2a^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{3a+4a^{2}}{6}-\frac{6a^{3}}{6}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a^{3} ni \frac{6}{6} marotabaga ko'paytirish.
\frac{3a+4a^{2}-6a^{3}}{6}
\frac{3a+4a^{2}}{6} va \frac{6a^{3}}{6} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{2}a-a^{3}+\frac{2}{3}a^{2}
\frac{1}{2}a-a^{3}+\frac{2}{3}a^{2} natijani olish uchun 3a+4a^{2}-6a^{3} ning har bir ifodasini 6 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}