Baholash
a
a ga nisbatan hosilani topish
1
Baham ko'rish
Klipbordga nusxa olish
\frac{a^{5}a^{-1}}{\left(\frac{a^{5}}{a^{8}}\right)^{-1}}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 3 va 2 ni qo‘shib, 5 ni oling.
\frac{a^{4}}{\left(\frac{a^{5}}{a^{8}}\right)^{-1}}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 5 va -1 ni qo‘shib, 4 ni oling.
\frac{a^{4}}{\left(\frac{1}{a^{3}}\right)^{-1}}
a^{8} ni a^{5}a^{3} sifatida qaytadan yozish. Surat va maxrajdagi ikkala a^{5} ni qisqartiring.
\frac{a^{4}}{\frac{1^{-1}}{\left(a^{3}\right)^{-1}}}
\frac{1}{a^{3}}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{a^{4}\left(a^{3}\right)^{-1}}{1^{-1}}
a^{4} ni \frac{1^{-1}}{\left(a^{3}\right)^{-1}} ga bo'lish a^{4} ga k'paytirish \frac{1^{-1}}{\left(a^{3}\right)^{-1}} ga qaytarish.
\frac{a^{4}a^{-3}}{1^{-1}}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 3 va -1 ni ko‘paytirib, -3 ni oling.
\frac{a^{1}}{1^{-1}}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 4 va -3 ni qo‘shib, 1 ni oling.
\frac{a}{1^{-1}}
1 daraja ko‘rsatkichini a ga hisoblang va a ni qiymatni oling.
\frac{a}{1}
-1 daraja ko‘rsatkichini 1 ga hisoblang va 1 ni qiymatni oling.
a
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}a^{-1}}{\left(\frac{a^{5}}{a^{8}}\right)^{-1}})
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 3 va 2 ni qo‘shib, 5 ni oling.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}}{\left(\frac{a^{5}}{a^{8}}\right)^{-1}})
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 5 va -1 ni qo‘shib, 4 ni oling.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}}{\left(\frac{1}{a^{3}}\right)^{-1}})
a^{8} ni a^{5}a^{3} sifatida qaytadan yozish. Surat va maxrajdagi ikkala a^{5} ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}}{\frac{1^{-1}}{\left(a^{3}\right)^{-1}}})
\frac{1}{a^{3}}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}\left(a^{3}\right)^{-1}}{1^{-1}})
a^{4} ni \frac{1^{-1}}{\left(a^{3}\right)^{-1}} ga bo'lish a^{4} ga k'paytirish \frac{1^{-1}}{\left(a^{3}\right)^{-1}} ga qaytarish.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}a^{-3}}{1^{-1}})
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 3 va -1 ni ko‘paytirib, -3 ni oling.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{1}}{1^{-1}})
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 4 va -3 ni qo‘shib, 1 ni oling.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a}{1^{-1}})
1 daraja ko‘rsatkichini a ga hisoblang va a ni qiymatni oling.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a}{1})
-1 daraja ko‘rsatkichini 1 ga hisoblang va 1 ni qiymatni oling.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
a^{1-1}
ax^{n} hosilasi – nax^{n-1}.
a^{0}
1 dan 1 ni ayirish.
1
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}