Baholash
-\frac{a+b}{a}
Kengaytirish
-\frac{b}{a}-1
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(a+b\right)\left(a-b\right)}{\left(a-b\right)^{2}}\times \frac{b-a}{a}
\frac{a^{2}-b^{2}}{a^{2}-2ab+b^{2}} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{a+b}{a-b}\times \frac{b-a}{a}
Surat va maxrajdagi ikkala a-b ni qisqartiring.
\frac{\left(a+b\right)\left(b-a\right)}{\left(a-b\right)a}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{a+b}{a-b} ni \frac{b-a}{a} ga ko‘paytiring.
\frac{-\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}
b-a mislodagi manfiy ishorani chiqarib tashlang.
\frac{-\left(a+b\right)}{a}
Surat va maxrajdagi ikkala a-b ni qisqartiring.
\frac{-a-b}{a}
a+b teskarisini topish uchun har birining teskarisini toping.
\frac{\left(a+b\right)\left(a-b\right)}{\left(a-b\right)^{2}}\times \frac{b-a}{a}
\frac{a^{2}-b^{2}}{a^{2}-2ab+b^{2}} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{a+b}{a-b}\times \frac{b-a}{a}
Surat va maxrajdagi ikkala a-b ni qisqartiring.
\frac{\left(a+b\right)\left(b-a\right)}{\left(a-b\right)a}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{a+b}{a-b} ni \frac{b-a}{a} ga ko‘paytiring.
\frac{-\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}
b-a mislodagi manfiy ishorani chiqarib tashlang.
\frac{-\left(a+b\right)}{a}
Surat va maxrajdagi ikkala a-b ni qisqartiring.
\frac{-a-b}{a}
a+b teskarisini topish uchun har birining teskarisini toping.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}