a uchun yechish
a=-6i
a=6i
Baham ko'rish
Klipbordga nusxa olish
a^{2}+4\left(\sqrt{15+3}\right)^{2}=36
Tenglamaning ikkala tarafini 36 ga, 36,9 ning eng kichik karralisiga ko‘paytiring.
a^{2}+4\left(\sqrt{18}\right)^{2}=36
18 olish uchun 15 va 3'ni qo'shing.
a^{2}+4\times 18=36
\sqrt{18} kvadrati – 18.
a^{2}+72=36
72 hosil qilish uchun 4 va 18 ni ko'paytirish.
a^{2}=36-72
Ikkala tarafdan 72 ni ayirish.
a^{2}=-36
-36 olish uchun 36 dan 72 ni ayirish.
a=6i a=-6i
Tenglama yechildi.
a^{2}+4\left(\sqrt{15+3}\right)^{2}=36
Tenglamaning ikkala tarafini 36 ga, 36,9 ning eng kichik karralisiga ko‘paytiring.
a^{2}+4\left(\sqrt{18}\right)^{2}=36
18 olish uchun 15 va 3'ni qo'shing.
a^{2}+4\times 18=36
\sqrt{18} kvadrati – 18.
a^{2}+72=36
72 hosil qilish uchun 4 va 18 ni ko'paytirish.
a^{2}+72-36=0
Ikkala tarafdan 36 ni ayirish.
a^{2}+36=0
36 olish uchun 72 dan 36 ni ayirish.
a=\frac{0±\sqrt{0^{2}-4\times 36}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va 36 ni c bilan almashtiring.
a=\frac{0±\sqrt{-4\times 36}}{2}
0 kvadratini chiqarish.
a=\frac{0±\sqrt{-144}}{2}
-4 ni 36 marotabaga ko'paytirish.
a=\frac{0±12i}{2}
-144 ning kvadrat ildizini chiqarish.
a=6i
a=\frac{0±12i}{2} tenglamasini yeching, bunda ± musbat.
a=-6i
a=\frac{0±12i}{2} tenglamasini yeching, bunda ± manfiy.
a=6i a=-6i
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}