Baholash
\frac{a^{4}-b^{4}}{36ab^{2}}
Kengaytirish
-\frac{b^{4}-a^{4}}{36ab^{2}}
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(a+b\right)\left(a-b\right)}{6\times 2a}\times \frac{a^{2}+b^{2}}{3b^{2}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{a+b}{6} ni \frac{a-b}{2a} ga ko‘paytiring.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{6\times 2a\times 3b^{2}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{\left(a+b\right)\left(a-b\right)}{6\times 2a} ni \frac{a^{2}+b^{2}}{3b^{2}} ga ko‘paytiring.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{12a\times 3b^{2}}
12 hosil qilish uchun 6 va 2 ni ko'paytirish.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
36 hosil qilish uchun 12 va 3 ni ko'paytirish.
\frac{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
a+b ga a-b ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}}{36ab^{2}}
Hisoblang: \left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{a^{4}-\left(b^{2}\right)^{2}}{36ab^{2}}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\frac{a^{4}-b^{4}}{36ab^{2}}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\frac{\left(a+b\right)\left(a-b\right)}{6\times 2a}\times \frac{a^{2}+b^{2}}{3b^{2}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{a+b}{6} ni \frac{a-b}{2a} ga ko‘paytiring.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{6\times 2a\times 3b^{2}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{\left(a+b\right)\left(a-b\right)}{6\times 2a} ni \frac{a^{2}+b^{2}}{3b^{2}} ga ko‘paytiring.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{12a\times 3b^{2}}
12 hosil qilish uchun 6 va 2 ni ko'paytirish.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
36 hosil qilish uchun 12 va 3 ni ko'paytirish.
\frac{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
a+b ga a-b ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}}{36ab^{2}}
Hisoblang: \left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{a^{4}-\left(b^{2}\right)^{2}}{36ab^{2}}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\frac{a^{4}-b^{4}}{36ab^{2}}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}