a uchun yechish
a=\frac{b\left(b+1\right)}{2}
b\neq -1\text{ and }b\neq 0
b uchun yechish
b=\frac{-\sqrt{8a+1}-1}{2}
b=\frac{\sqrt{8a+1}-1}{2}\text{, }a\neq 0\text{ and }a\geq -\frac{1}{8}
Baham ko'rish
Klipbordga nusxa olish
a\left(a+1\right)=a\left(a-1\right)+b\left(b+1\right)
a qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini ab ga, b,a ning eng kichik karralisiga ko‘paytiring.
a^{2}+a=a\left(a-1\right)+b\left(b+1\right)
a ga a+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
a^{2}+a=a^{2}-a+b\left(b+1\right)
a ga a-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
a^{2}+a=a^{2}-a+b^{2}+b
b ga b+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
a^{2}+a-a^{2}=-a+b^{2}+b
Ikkala tarafdan a^{2} ni ayirish.
a=-a+b^{2}+b
0 ni olish uchun a^{2} va -a^{2} ni birlashtirish.
a+a=b^{2}+b
a ni ikki tarafga qo’shing.
2a=b^{2}+b
2a ni olish uchun a va a ni birlashtirish.
\frac{2a}{2}=\frac{b\left(b+1\right)}{2}
Ikki tarafini 2 ga bo‘ling.
a=\frac{b\left(b+1\right)}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
a=\frac{b\left(b+1\right)}{2}\text{, }a\neq 0
a qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}