Asosiy tarkibga oʻtish
Baholash
Tick mark Image
b ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\frac{a\left(1+ab\right)}{1+ab}+\frac{b-a}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a ni \frac{1+ab}{1+ab} marotabaga ko'paytirish.
\frac{\frac{a\left(1+ab\right)+b-a}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}}
\frac{a\left(1+ab\right)}{1+ab} va \frac{b-a}{1+ab} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{a+a^{2}b+b-a}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}}
a\left(1+ab\right)+b-a ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{b+a^{2}b}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}}
a+a^{2}b+b-a kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+ab}{1+ab}-\frac{ab-a^{2}}{1+ab}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{1+ab}{1+ab} marotabaga ko'paytirish.
\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+ab-\left(ab-a^{2}\right)}{1+ab}}
\frac{1+ab}{1+ab} va \frac{ab-a^{2}}{1+ab} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+ab-ab+a^{2}}{1+ab}}
1+ab-\left(ab-a^{2}\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+a^{2}}{1+ab}}
1+ab-ab+a^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{\left(b+a^{2}b\right)\left(1+ab\right)}{\left(1+ab\right)\left(1+a^{2}\right)}
\frac{b+a^{2}b}{1+ab} ni \frac{1+a^{2}}{1+ab} ga bo'lish \frac{b+a^{2}b}{1+ab} ga k'paytirish \frac{1+a^{2}}{1+ab} ga qaytarish.
\frac{ba^{2}+b}{a^{2}+1}
Surat va maxrajdagi ikkala ab+1 ni qisqartiring.
\frac{b\left(a^{2}+1\right)}{a^{2}+1}
Hali faktorlanmagan ifodalarni faktorlang.
b
Surat va maxrajdagi ikkala a^{2}+1 ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{a\left(1+ab\right)}{1+ab}+\frac{b-a}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a ni \frac{1+ab}{1+ab} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{a\left(1+ab\right)+b-a}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}})
\frac{a\left(1+ab\right)}{1+ab} va \frac{b-a}{1+ab} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{a+a^{2}b+b-a}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}})
a\left(1+ab\right)+b-a ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{b+a^{2}b}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}})
a+a^{2}b+b-a kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+ab}{1+ab}-\frac{ab-a^{2}}{1+ab}})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{1+ab}{1+ab} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+ab-\left(ab-a^{2}\right)}{1+ab}})
\frac{1+ab}{1+ab} va \frac{ab-a^{2}}{1+ab} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+ab-ab+a^{2}}{1+ab}})
1+ab-\left(ab-a^{2}\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+a^{2}}{1+ab}})
1+ab-ab+a^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\left(b+a^{2}b\right)\left(1+ab\right)}{\left(1+ab\right)\left(1+a^{2}\right)})
\frac{b+a^{2}b}{1+ab} ni \frac{1+a^{2}}{1+ab} ga bo'lish \frac{b+a^{2}b}{1+ab} ga k'paytirish \frac{1+a^{2}}{1+ab} ga qaytarish.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{ba^{2}+b}{a^{2}+1})
Surat va maxrajdagi ikkala ab+1 ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b\left(a^{2}+1\right)}{a^{2}+1})
\frac{ba^{2}+b}{a^{2}+1} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\mathrm{d}}{\mathrm{d}b}(b)
Surat va maxrajdagi ikkala a^{2}+1 ni qisqartiring.
b^{1-1}
ax^{n} hosilasi – nax^{n-1}.
b^{0}
1 dan 1 ni ayirish.
1
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.