Y uchun yechish
Y=\frac{U}{s\left(s+1\right)\left(s+2\right)}
U\neq 0\text{ and }s\neq 0\text{ and }s\neq -1\text{ and }s\neq -2
U uchun yechish
U=Ys\left(s+1\right)\left(s+2\right)
s\neq 0\text{ and }s\neq -2\text{ and }s\neq -1\text{ and }Y\neq 0
Viktorina
Algebra
5xshash muammolar:
\frac { Y ( s ) } { U ( s ) } = \frac { 1 } { s ( s + 1 ) ( s + 2 ) }
Baham ko'rish
Klipbordga nusxa olish
\left(s+1\right)\left(s+2\right)Ys=U
Tenglamaning ikkala tarafini Us\left(s+1\right)\left(s+2\right) ga, Us,s\left(s+1\right)\left(s+2\right) ning eng kichik karralisiga ko‘paytiring.
\left(s^{2}+3s+2\right)Ys=U
s+1 ga s+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\left(s^{2}Y+3sY+2Y\right)s=U
s^{2}+3s+2 ga Y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
Ys^{3}+3Ys^{2}+2Ys=U
s^{2}Y+3sY+2Y ga s ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(s^{3}+3s^{2}+2s\right)Y=U
Y'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(s^{3}+3s^{2}+2s\right)Y}{s^{3}+3s^{2}+2s}=\frac{U}{s^{3}+3s^{2}+2s}
Ikki tarafini 3s^{2}+s^{3}+2s ga bo‘ling.
Y=\frac{U}{s^{3}+3s^{2}+2s}
3s^{2}+s^{3}+2s ga bo'lish 3s^{2}+s^{3}+2s ga ko'paytirishni bekor qiladi.
Y=\frac{U}{s\left(s+1\right)\left(s+2\right)}
U ni 3s^{2}+s^{3}+2s ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}