Asosiy tarkibga oʻtish
Y uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

s\left(s+1\right)\left(s+2\right)Ys=x_{s}
Tenglamaning ikkala tarafini sx_{s}\left(s+1\right)\left(s+2\right) ga, x_{s},s\left(s+1\right)\left(s+2\right) ning eng kichik karralisiga ko‘paytiring.
\left(s^{2}+s\right)\left(s+2\right)Ys=x_{s}
s ga s+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(s^{3}+3s^{2}+2s\right)Ys=x_{s}
s^{2}+s ga s+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\left(s^{3}Y+3s^{2}Y+2sY\right)s=x_{s}
s^{3}+3s^{2}+2s ga Y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
Ys^{4}+3Ys^{3}+2Ys^{2}=x_{s}
s^{3}Y+3s^{2}Y+2sY ga s ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(s^{4}+3s^{3}+2s^{2}\right)Y=x_{s}
Y'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(s^{4}+3s^{3}+2s^{2}\right)Y}{s^{4}+3s^{3}+2s^{2}}=\frac{x_{s}}{s^{4}+3s^{3}+2s^{2}}
Ikki tarafini s^{4}+3s^{3}+2s^{2} ga bo‘ling.
Y=\frac{x_{s}}{s^{4}+3s^{3}+2s^{2}}
s^{4}+3s^{3}+2s^{2} ga bo'lish s^{4}+3s^{3}+2s^{2} ga ko'paytirishni bekor qiladi.
Y=\frac{x_{s}}{\left(s+1\right)\left(s+2\right)s^{2}}
x_{s} ni s^{4}+3s^{3}+2s^{2} ga bo'lish.