C uchun yechish
C=\frac{W^{2}}{d^{3}}
d\neq 0
W uchun yechish (complex solution)
W=-\sqrt{C}d^{\frac{3}{2}}
W=\sqrt{C}d^{\frac{3}{2}}\text{, }d\neq 0
W uchun yechish
W=\sqrt{Cd^{3}}
W=-\sqrt{Cd^{3}}\text{, }\left(C\geq 0\text{ and }d>0\right)\text{ or }\left(C\leq 0\text{ and }d<0\right)
Baham ko'rish
Klipbordga nusxa olish
W^{2}=Cd^{3}
Tenglamaning ikkala tarafini d^{3} ga ko'paytirish.
Cd^{3}=W^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
d^{3}C=W^{2}
Tenglama standart shaklda.
\frac{d^{3}C}{d^{3}}=\frac{W^{2}}{d^{3}}
Ikki tarafini d^{3} ga bo‘ling.
C=\frac{W^{2}}{d^{3}}
d^{3} ga bo'lish d^{3} ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}