C uchun yechish
C=\frac{2Pn_{2}}{3\left(n+12\right)}
n\neq -12\text{ and }n_{2}\neq 0\text{ and }P\neq 0
P uchun yechish
P=\frac{3C\left(n+12\right)}{2n_{2}}
n_{2}\neq 0\text{ and }C\neq 0\text{ and }n\neq -12
Baham ko'rish
Klipbordga nusxa olish
2Pn_{2}=3C\left(n+12\right)
C qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2C\left(n+12\right) ga, C\left(n+12\right),2 ning eng kichik karralisiga ko‘paytiring.
2Pn_{2}=3Cn+36C
3C ga n+12 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3Cn+36C=2Pn_{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(3n+36\right)C=2Pn_{2}
C'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(3n+36\right)C}{3n+36}=\frac{2Pn_{2}}{3n+36}
Ikki tarafini 3n+36 ga bo‘ling.
C=\frac{2Pn_{2}}{3n+36}
3n+36 ga bo'lish 3n+36 ga ko'paytirishni bekor qiladi.
C=\frac{2Pn_{2}}{3\left(n+12\right)}
2Pn_{2} ni 3n+36 ga bo'lish.
C=\frac{2Pn_{2}}{3\left(n+12\right)}\text{, }C\neq 0
C qiymati 0 teng bo‘lmaydi.
2Pn_{2}=3C\left(n+12\right)
Tenglamaning ikkala tarafini 2C\left(n+12\right) ga, C\left(n+12\right),2 ning eng kichik karralisiga ko‘paytiring.
2Pn_{2}=3Cn+36C
3C ga n+12 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2n_{2}P=3Cn+36C
Tenglama standart shaklda.
\frac{2n_{2}P}{2n_{2}}=\frac{3C\left(n+12\right)}{2n_{2}}
Ikki tarafini 2n_{2} ga bo‘ling.
P=\frac{3C\left(n+12\right)}{2n_{2}}
2n_{2} ga bo'lish 2n_{2} ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}