\frac { G _ { 1 } } { T _ { 1 } } = 32 \%
G_1 uchun yechish
G_{1}=\frac{8T_{1}}{25}
T_{1}\neq 0
T_1 uchun yechish
T_{1}=\frac{25G_{1}}{8}
G_{1}\neq 0
Baham ko'rish
Klipbordga nusxa olish
100G_{1}=T_{1}\times 32
Tenglamaning ikkala tarafini 100T_{1} ga, T_{1},100 ning eng kichik karralisiga ko‘paytiring.
100G_{1}=32T_{1}
Tenglama standart shaklda.
\frac{100G_{1}}{100}=\frac{32T_{1}}{100}
Ikki tarafini 100 ga bo‘ling.
G_{1}=\frac{32T_{1}}{100}
100 ga bo'lish 100 ga ko'paytirishni bekor qiladi.
G_{1}=\frac{8T_{1}}{25}
32T_{1} ni 100 ga bo'lish.
100G_{1}=T_{1}\times 32
T_{1} qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 100T_{1} ga, T_{1},100 ning eng kichik karralisiga ko‘paytiring.
T_{1}\times 32=100G_{1}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
32T_{1}=100G_{1}
Tenglama standart shaklda.
\frac{32T_{1}}{32}=\frac{100G_{1}}{32}
Ikki tarafini 32 ga bo‘ling.
T_{1}=\frac{100G_{1}}{32}
32 ga bo'lish 32 ga ko'paytirishni bekor qiladi.
T_{1}=\frac{25G_{1}}{8}
100G_{1} ni 32 ga bo'lish.
T_{1}=\frac{25G_{1}}{8}\text{, }T_{1}\neq 0
T_{1} qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}