Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Baham ko'rish

\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
\frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} ni \frac{6x+10y}{5x-25y} ga bo'lish \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} ga k'paytirish \frac{6x+10y}{5x-25y} ga qaytarish.
\frac{5\left(x-5y\right)\left(3x-5y\right)\left(3x+5y\right)}{2\left(3x-5y\right)\left(3x+5y\right)\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Surat va maxrajdagi ikkala \left(3x-5y\right)\left(3x+5y\right) ni qisqartiring.
\frac{5\left(x-5y\right)\left(9x^{2}+15xy+25y^{2}\right)}{2\left(9x^{2}+15xy+25y^{2}\right)\left(9x^{2}-18xy+5y^{2}\right)}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)} ni \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}} ga ko‘paytiring.
\frac{5\left(x-5y\right)}{2\left(9x^{2}-18xy+5y^{2}\right)}
Surat va maxrajdagi ikkala 9x^{2}+15xy+25y^{2} ni qisqartiring.
\frac{5x-25y}{2\left(9x^{2}-18xy+5y^{2}\right)}
5 ga x-5y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{5x-25y}{18x^{2}-36xy+10y^{2}}
2 ga 9x^{2}-18xy+5y^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
\frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} ni \frac{6x+10y}{5x-25y} ga bo'lish \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} ga k'paytirish \frac{6x+10y}{5x-25y} ga qaytarish.
\frac{5\left(x-5y\right)\left(3x-5y\right)\left(3x+5y\right)}{2\left(3x-5y\right)\left(3x+5y\right)\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Surat va maxrajdagi ikkala \left(3x-5y\right)\left(3x+5y\right) ni qisqartiring.
\frac{5\left(x-5y\right)\left(9x^{2}+15xy+25y^{2}\right)}{2\left(9x^{2}+15xy+25y^{2}\right)\left(9x^{2}-18xy+5y^{2}\right)}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)} ni \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}} ga ko‘paytiring.
\frac{5\left(x-5y\right)}{2\left(9x^{2}-18xy+5y^{2}\right)}
Surat va maxrajdagi ikkala 9x^{2}+15xy+25y^{2} ni qisqartiring.
\frac{5x-25y}{2\left(9x^{2}-18xy+5y^{2}\right)}
5 ga x-5y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{5x-25y}{18x^{2}-36xy+10y^{2}}
2 ga 9x^{2}-18xy+5y^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.