Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(4x-7\right)\left(9x+7\right)=\left(7x-9\right)\left(9-8x\right)
x qiymati \frac{9}{7},\frac{7}{4} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(4x-7\right)\left(7x-9\right) ga, 7x-9,4x-7 ning eng kichik karralisiga ko‘paytiring.
36x^{2}-35x-49=\left(7x-9\right)\left(9-8x\right)
4x-7 ga 9x+7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
36x^{2}-35x-49=135x-56x^{2}-81
7x-9 ga 9-8x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
36x^{2}-35x-49-135x=-56x^{2}-81
Ikkala tarafdan 135x ni ayirish.
36x^{2}-170x-49=-56x^{2}-81
-170x ni olish uchun -35x va -135x ni birlashtirish.
36x^{2}-170x-49+56x^{2}=-81
56x^{2} ni ikki tarafga qo’shing.
92x^{2}-170x-49=-81
92x^{2} ni olish uchun 36x^{2} va 56x^{2} ni birlashtirish.
92x^{2}-170x-49+81=0
81 ni ikki tarafga qo’shing.
92x^{2}-170x+32=0
32 olish uchun -49 va 81'ni qo'shing.
x=\frac{-\left(-170\right)±\sqrt{\left(-170\right)^{2}-4\times 92\times 32}}{2\times 92}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 92 ni a, -170 ni b va 32 ni c bilan almashtiring.
x=\frac{-\left(-170\right)±\sqrt{28900-4\times 92\times 32}}{2\times 92}
-170 kvadratini chiqarish.
x=\frac{-\left(-170\right)±\sqrt{28900-368\times 32}}{2\times 92}
-4 ni 92 marotabaga ko'paytirish.
x=\frac{-\left(-170\right)±\sqrt{28900-11776}}{2\times 92}
-368 ni 32 marotabaga ko'paytirish.
x=\frac{-\left(-170\right)±\sqrt{17124}}{2\times 92}
28900 ni -11776 ga qo'shish.
x=\frac{-\left(-170\right)±2\sqrt{4281}}{2\times 92}
17124 ning kvadrat ildizini chiqarish.
x=\frac{170±2\sqrt{4281}}{2\times 92}
-170 ning teskarisi 170 ga teng.
x=\frac{170±2\sqrt{4281}}{184}
2 ni 92 marotabaga ko'paytirish.
x=\frac{2\sqrt{4281}+170}{184}
x=\frac{170±2\sqrt{4281}}{184} tenglamasini yeching, bunda ± musbat. 170 ni 2\sqrt{4281} ga qo'shish.
x=\frac{\sqrt{4281}+85}{92}
170+2\sqrt{4281} ni 184 ga bo'lish.
x=\frac{170-2\sqrt{4281}}{184}
x=\frac{170±2\sqrt{4281}}{184} tenglamasini yeching, bunda ± manfiy. 170 dan 2\sqrt{4281} ni ayirish.
x=\frac{85-\sqrt{4281}}{92}
170-2\sqrt{4281} ni 184 ga bo'lish.
x=\frac{\sqrt{4281}+85}{92} x=\frac{85-\sqrt{4281}}{92}
Tenglama yechildi.
\left(4x-7\right)\left(9x+7\right)=\left(7x-9\right)\left(9-8x\right)
x qiymati \frac{9}{7},\frac{7}{4} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(4x-7\right)\left(7x-9\right) ga, 7x-9,4x-7 ning eng kichik karralisiga ko‘paytiring.
36x^{2}-35x-49=\left(7x-9\right)\left(9-8x\right)
4x-7 ga 9x+7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
36x^{2}-35x-49=135x-56x^{2}-81
7x-9 ga 9-8x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
36x^{2}-35x-49-135x=-56x^{2}-81
Ikkala tarafdan 135x ni ayirish.
36x^{2}-170x-49=-56x^{2}-81
-170x ni olish uchun -35x va -135x ni birlashtirish.
36x^{2}-170x-49+56x^{2}=-81
56x^{2} ni ikki tarafga qo’shing.
92x^{2}-170x-49=-81
92x^{2} ni olish uchun 36x^{2} va 56x^{2} ni birlashtirish.
92x^{2}-170x=-81+49
49 ni ikki tarafga qo’shing.
92x^{2}-170x=-32
-32 olish uchun -81 va 49'ni qo'shing.
\frac{92x^{2}-170x}{92}=-\frac{32}{92}
Ikki tarafini 92 ga bo‘ling.
x^{2}+\left(-\frac{170}{92}\right)x=-\frac{32}{92}
92 ga bo'lish 92 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{85}{46}x=-\frac{32}{92}
\frac{-170}{92} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{85}{46}x=-\frac{8}{23}
\frac{-32}{92} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{85}{46}x+\left(-\frac{85}{92}\right)^{2}=-\frac{8}{23}+\left(-\frac{85}{92}\right)^{2}
-\frac{85}{46} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{85}{92} olish uchun. Keyin, -\frac{85}{92} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{85}{46}x+\frac{7225}{8464}=-\frac{8}{23}+\frac{7225}{8464}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{85}{92} kvadratini chiqarish.
x^{2}-\frac{85}{46}x+\frac{7225}{8464}=\frac{4281}{8464}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{8}{23} ni \frac{7225}{8464} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{85}{92}\right)^{2}=\frac{4281}{8464}
x^{2}-\frac{85}{46}x+\frac{7225}{8464} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{85}{92}\right)^{2}}=\sqrt{\frac{4281}{8464}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{85}{92}=\frac{\sqrt{4281}}{92} x-\frac{85}{92}=-\frac{\sqrt{4281}}{92}
Qisqartirish.
x=\frac{\sqrt{4281}+85}{92} x=\frac{85-\sqrt{4281}}{92}
\frac{85}{92} ni tenglamaning ikkala tarafiga qo'shish.