Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

36\left(9-y^{2}\right)-25y^{2}=900
Tenglamaning ikkala tarafini 900 ga, 25,36 ning eng kichik karralisiga ko‘paytiring.
324-36y^{2}-25y^{2}=900
36 ga 9-y^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
324-61y^{2}=900
-61y^{2} ni olish uchun -36y^{2} va -25y^{2} ni birlashtirish.
-61y^{2}=900-324
Ikkala tarafdan 324 ni ayirish.
-61y^{2}=576
576 olish uchun 900 dan 324 ni ayirish.
y^{2}=-\frac{576}{61}
Ikki tarafini -61 ga bo‘ling.
y=\frac{24\sqrt{61}i}{61} y=-\frac{24\sqrt{61}i}{61}
Tenglama yechildi.
36\left(9-y^{2}\right)-25y^{2}=900
Tenglamaning ikkala tarafini 900 ga, 25,36 ning eng kichik karralisiga ko‘paytiring.
324-36y^{2}-25y^{2}=900
36 ga 9-y^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
324-61y^{2}=900
-61y^{2} ni olish uchun -36y^{2} va -25y^{2} ni birlashtirish.
324-61y^{2}-900=0
Ikkala tarafdan 900 ni ayirish.
-576-61y^{2}=0
-576 olish uchun 324 dan 900 ni ayirish.
-61y^{2}-576=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\left(-61\right)\left(-576\right)}}{2\left(-61\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -61 ni a, 0 ni b va -576 ni c bilan almashtiring.
y=\frac{0±\sqrt{-4\left(-61\right)\left(-576\right)}}{2\left(-61\right)}
0 kvadratini chiqarish.
y=\frac{0±\sqrt{244\left(-576\right)}}{2\left(-61\right)}
-4 ni -61 marotabaga ko'paytirish.
y=\frac{0±\sqrt{-140544}}{2\left(-61\right)}
244 ni -576 marotabaga ko'paytirish.
y=\frac{0±48\sqrt{61}i}{2\left(-61\right)}
-140544 ning kvadrat ildizini chiqarish.
y=\frac{0±48\sqrt{61}i}{-122}
2 ni -61 marotabaga ko'paytirish.
y=-\frac{24\sqrt{61}i}{61}
y=\frac{0±48\sqrt{61}i}{-122} tenglamasini yeching, bunda ± musbat.
y=\frac{24\sqrt{61}i}{61}
y=\frac{0±48\sqrt{61}i}{-122} tenglamasini yeching, bunda ± manfiy.
y=-\frac{24\sqrt{61}i}{61} y=\frac{24\sqrt{61}i}{61}
Tenglama yechildi.