x uchun yechish
x = \frac{1300}{51} = 25\frac{25}{51} \approx 25,490196078
Grafik
Baham ko'rish
Klipbordga nusxa olish
32\left(81-x\right)=19\left(68+x\right)
Tenglamaning ikkala tarafini 608 ga, 19,32 ning eng kichik karralisiga ko‘paytiring.
2592-32x=19\left(68+x\right)
32 ga 81-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2592-32x=1292+19x
19 ga 68+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2592-32x-19x=1292
Ikkala tarafdan 19x ni ayirish.
2592-51x=1292
-51x ni olish uchun -32x va -19x ni birlashtirish.
-51x=1292-2592
Ikkala tarafdan 2592 ni ayirish.
-51x=-1300
-1300 olish uchun 1292 dan 2592 ni ayirish.
x=\frac{-1300}{-51}
Ikki tarafini -51 ga bo‘ling.
x=\frac{1300}{51}
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-1300}{-51} kasrini \frac{1300}{51} ga soddalashtirish mumkin.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}