y uchun yechish
y = \frac{\sqrt{413629} + 767}{30} \approx 47,004665122
y = \frac{767 - \sqrt{413629}}{30} \approx 4,128668211
Grafik
Baham ko'rish
Klipbordga nusxa olish
-y\times 81+y\left(y-41\right)\times 15=\left(y-41\right)\times 71
y qiymati 0,41 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini y\left(y-41\right) ga, 41-y,y ning eng kichik karralisiga ko‘paytiring.
-81y+y\left(y-41\right)\times 15=\left(y-41\right)\times 71
-81 hosil qilish uchun -1 va 81 ni ko'paytirish.
-81y+\left(y^{2}-41y\right)\times 15=\left(y-41\right)\times 71
y ga y-41 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-81y+15y^{2}-615y=\left(y-41\right)\times 71
y^{2}-41y ga 15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-696y+15y^{2}=\left(y-41\right)\times 71
-696y ni olish uchun -81y va -615y ni birlashtirish.
-696y+15y^{2}=71y-2911
y-41 ga 71 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-696y+15y^{2}-71y=-2911
Ikkala tarafdan 71y ni ayirish.
-767y+15y^{2}=-2911
-767y ni olish uchun -696y va -71y ni birlashtirish.
-767y+15y^{2}+2911=0
2911 ni ikki tarafga qo’shing.
15y^{2}-767y+2911=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-767\right)±\sqrt{\left(-767\right)^{2}-4\times 15\times 2911}}{2\times 15}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 15 ni a, -767 ni b va 2911 ni c bilan almashtiring.
y=\frac{-\left(-767\right)±\sqrt{588289-4\times 15\times 2911}}{2\times 15}
-767 kvadratini chiqarish.
y=\frac{-\left(-767\right)±\sqrt{588289-60\times 2911}}{2\times 15}
-4 ni 15 marotabaga ko'paytirish.
y=\frac{-\left(-767\right)±\sqrt{588289-174660}}{2\times 15}
-60 ni 2911 marotabaga ko'paytirish.
y=\frac{-\left(-767\right)±\sqrt{413629}}{2\times 15}
588289 ni -174660 ga qo'shish.
y=\frac{767±\sqrt{413629}}{2\times 15}
-767 ning teskarisi 767 ga teng.
y=\frac{767±\sqrt{413629}}{30}
2 ni 15 marotabaga ko'paytirish.
y=\frac{\sqrt{413629}+767}{30}
y=\frac{767±\sqrt{413629}}{30} tenglamasini yeching, bunda ± musbat. 767 ni \sqrt{413629} ga qo'shish.
y=\frac{767-\sqrt{413629}}{30}
y=\frac{767±\sqrt{413629}}{30} tenglamasini yeching, bunda ± manfiy. 767 dan \sqrt{413629} ni ayirish.
y=\frac{\sqrt{413629}+767}{30} y=\frac{767-\sqrt{413629}}{30}
Tenglama yechildi.
-y\times 81+y\left(y-41\right)\times 15=\left(y-41\right)\times 71
y qiymati 0,41 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini y\left(y-41\right) ga, 41-y,y ning eng kichik karralisiga ko‘paytiring.
-81y+y\left(y-41\right)\times 15=\left(y-41\right)\times 71
-81 hosil qilish uchun -1 va 81 ni ko'paytirish.
-81y+\left(y^{2}-41y\right)\times 15=\left(y-41\right)\times 71
y ga y-41 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-81y+15y^{2}-615y=\left(y-41\right)\times 71
y^{2}-41y ga 15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-696y+15y^{2}=\left(y-41\right)\times 71
-696y ni olish uchun -81y va -615y ni birlashtirish.
-696y+15y^{2}=71y-2911
y-41 ga 71 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-696y+15y^{2}-71y=-2911
Ikkala tarafdan 71y ni ayirish.
-767y+15y^{2}=-2911
-767y ni olish uchun -696y va -71y ni birlashtirish.
15y^{2}-767y=-2911
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{15y^{2}-767y}{15}=-\frac{2911}{15}
Ikki tarafini 15 ga bo‘ling.
y^{2}-\frac{767}{15}y=-\frac{2911}{15}
15 ga bo'lish 15 ga ko'paytirishni bekor qiladi.
y^{2}-\frac{767}{15}y+\left(-\frac{767}{30}\right)^{2}=-\frac{2911}{15}+\left(-\frac{767}{30}\right)^{2}
-\frac{767}{15} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{767}{30} olish uchun. Keyin, -\frac{767}{30} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-\frac{767}{15}y+\frac{588289}{900}=-\frac{2911}{15}+\frac{588289}{900}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{767}{30} kvadratini chiqarish.
y^{2}-\frac{767}{15}y+\frac{588289}{900}=\frac{413629}{900}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2911}{15} ni \frac{588289}{900} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(y-\frac{767}{30}\right)^{2}=\frac{413629}{900}
y^{2}-\frac{767}{15}y+\frac{588289}{900} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-\frac{767}{30}\right)^{2}}=\sqrt{\frac{413629}{900}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-\frac{767}{30}=\frac{\sqrt{413629}}{30} y-\frac{767}{30}=-\frac{\sqrt{413629}}{30}
Qisqartirish.
y=\frac{\sqrt{413629}+767}{30} y=\frac{767-\sqrt{413629}}{30}
\frac{767}{30} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}