Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(8+6i\right)\left(55-10i\right)}{\left(55+10i\right)\left(55-10i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 55-10i.
\frac{\left(8+6i\right)\left(55-10i\right)}{55^{2}-10^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+6i\right)\left(55-10i\right)}{3125}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{8\times 55+8\times \left(-10i\right)+6i\times 55+6\left(-10\right)i^{2}}{3125}
Binomlarni ko‘paytirgandek 8+6i va 55-10i murakkab sonlarni ko‘paytiring.
\frac{8\times 55+8\times \left(-10i\right)+6i\times 55+6\left(-10\right)\left(-1\right)}{3125}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{440-80i+330i+60}{3125}
8\times 55+8\times \left(-10i\right)+6i\times 55+6\left(-10\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{440+60+\left(-80+330\right)i}{3125}
440-80i+330i+60 ichida real va mavhum qismlarni birlashtiring.
\frac{500+250i}{3125}
440+60+\left(-80+330\right)i ichida qo‘shishlarni bajaring.
\frac{4}{25}+\frac{2}{25}i
\frac{4}{25}+\frac{2}{25}i ni olish uchun 500+250i ni 3125 ga bo‘ling.
Re(\frac{\left(8+6i\right)\left(55-10i\right)}{\left(55+10i\right)\left(55-10i\right)})
\frac{8+6i}{55+10i}ning surat va maxrajini murakkab tutash maxraj 55-10i bilan ko‘paytiring.
Re(\frac{\left(8+6i\right)\left(55-10i\right)}{55^{2}-10^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8+6i\right)\left(55-10i\right)}{3125})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{8\times 55+8\times \left(-10i\right)+6i\times 55+6\left(-10\right)i^{2}}{3125})
Binomlarni ko‘paytirgandek 8+6i va 55-10i murakkab sonlarni ko‘paytiring.
Re(\frac{8\times 55+8\times \left(-10i\right)+6i\times 55+6\left(-10\right)\left(-1\right)}{3125})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{440-80i+330i+60}{3125})
8\times 55+8\times \left(-10i\right)+6i\times 55+6\left(-10\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{440+60+\left(-80+330\right)i}{3125})
440-80i+330i+60 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{500+250i}{3125})
440+60+\left(-80+330\right)i ichida qo‘shishlarni bajaring.
Re(\frac{4}{25}+\frac{2}{25}i)
\frac{4}{25}+\frac{2}{25}i ni olish uchun 500+250i ni 3125 ga bo‘ling.
\frac{4}{25}
\frac{4}{25}+\frac{2}{25}i ning real qismi – \frac{4}{25}.