Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(8+4i\right)\left(9+3i\right)}{\left(9-3i\right)\left(9+3i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 9+3i.
\frac{\left(8+4i\right)\left(9+3i\right)}{9^{2}-3^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+4i\right)\left(9+3i\right)}{90}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3i^{2}}{90}
Binomlarni ko‘paytirgandek 8+4i va 9+3i murakkab sonlarni ko‘paytiring.
\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right)}{90}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{72+24i+36i-12}{90}
8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{72-12+\left(24+36\right)i}{90}
72+24i+36i-12 ichida real va mavhum qismlarni birlashtiring.
\frac{60+60i}{90}
72-12+\left(24+36\right)i ichida qo‘shishlarni bajaring.
\frac{2}{3}+\frac{2}{3}i
\frac{2}{3}+\frac{2}{3}i ni olish uchun 60+60i ni 90 ga bo‘ling.
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{\left(9-3i\right)\left(9+3i\right)})
\frac{8+4i}{9-3i}ning surat va maxrajini murakkab tutash maxraj 9+3i bilan ko‘paytiring.
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{9^{2}-3^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{90})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3i^{2}}{90})
Binomlarni ko‘paytirgandek 8+4i va 9+3i murakkab sonlarni ko‘paytiring.
Re(\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right)}{90})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{72+24i+36i-12}{90})
8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{72-12+\left(24+36\right)i}{90})
72+24i+36i-12 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{60+60i}{90})
72-12+\left(24+36\right)i ichida qo‘shishlarni bajaring.
Re(\frac{2}{3}+\frac{2}{3}i)
\frac{2}{3}+\frac{2}{3}i ni olish uchun 60+60i ni 90 ga bo‘ling.
\frac{2}{3}
\frac{2}{3}+\frac{2}{3}i ning real qismi – \frac{2}{3}.