Baholash
\frac{2}{3}+\frac{2}{3}i\approx 0,666666667+0,666666667i
Ashyoviy qism
\frac{2}{3} = 0,6666666666666666
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(8+4i\right)\left(9+3i\right)}{\left(9-3i\right)\left(9+3i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 9+3i.
\frac{\left(8+4i\right)\left(9+3i\right)}{9^{2}-3^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+4i\right)\left(9+3i\right)}{90}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3i^{2}}{90}
Binomlarni ko‘paytirgandek 8+4i va 9+3i murakkab sonlarni ko‘paytiring.
\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right)}{90}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{72+24i+36i-12}{90}
8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{72-12+\left(24+36\right)i}{90}
72+24i+36i-12 ichida real va mavhum qismlarni birlashtiring.
\frac{60+60i}{90}
72-12+\left(24+36\right)i ichida qo‘shishlarni bajaring.
\frac{2}{3}+\frac{2}{3}i
\frac{2}{3}+\frac{2}{3}i ni olish uchun 60+60i ni 90 ga bo‘ling.
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{\left(9-3i\right)\left(9+3i\right)})
\frac{8+4i}{9-3i}ning surat va maxrajini murakkab tutash maxraj 9+3i bilan ko‘paytiring.
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{9^{2}-3^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{90})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3i^{2}}{90})
Binomlarni ko‘paytirgandek 8+4i va 9+3i murakkab sonlarni ko‘paytiring.
Re(\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right)}{90})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{72+24i+36i-12}{90})
8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{72-12+\left(24+36\right)i}{90})
72+24i+36i-12 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{60+60i}{90})
72-12+\left(24+36\right)i ichida qo‘shishlarni bajaring.
Re(\frac{2}{3}+\frac{2}{3}i)
\frac{2}{3}+\frac{2}{3}i ni olish uchun 60+60i ni 90 ga bo‘ling.
\frac{2}{3}
\frac{2}{3}+\frac{2}{3}i ning real qismi – \frac{2}{3}.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}