Baholash
\frac{9-\sqrt{10}-3\sqrt{5}-5\sqrt{2}}{2}\approx -3,970774702
Omil
\frac{9 - \sqrt{10} - 3 \sqrt{5} - 5 \sqrt{2}}{2} = -3,9707747022666124
Viktorina
Arithmetic
\frac { 8 + 4 - 2 \sqrt { 5 } - 4 \sqrt { 5 } + 2 \sqrt { 10 } } { 1 - \sqrt { 5 } }
Baham ko'rish
Klipbordga nusxa olish
\frac{12-2\sqrt{5}-4\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}}
12 olish uchun 8 va 4'ni qo'shing.
\frac{12-6\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}}
-6\sqrt{5} ni olish uchun -2\sqrt{5} va -4\sqrt{5} ni birlashtirish.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}
\frac{12-6\sqrt{5}+2\sqrt{10}}{1-\sqrt{5}} maxrajini 1+\sqrt{5} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Hisoblang: \left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{1-5}
1 kvadratini chiqarish. \sqrt{5} kvadratini chiqarish.
\frac{\left(12-6\sqrt{5}+2\sqrt{10}\right)\left(1+\sqrt{5}\right)}{-4}
-4 olish uchun 1 dan 5 ni ayirish.
\frac{12+12\sqrt{5}-6\sqrt{5}-6\left(\sqrt{5}\right)^{2}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
12-6\sqrt{5}+2\sqrt{10} ifodaning har bir elementini 1+\sqrt{5} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{12+6\sqrt{5}-6\left(\sqrt{5}\right)^{2}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
6\sqrt{5} ni olish uchun 12\sqrt{5} va -6\sqrt{5} ni birlashtirish.
\frac{12+6\sqrt{5}-6\times 5+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
\sqrt{5} kvadrati – 5.
\frac{12+6\sqrt{5}-30+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
-30 hosil qilish uchun -6 va 5 ni ko'paytirish.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\sqrt{10}\sqrt{5}}{-4}
-18 olish uchun 12 dan 30 ni ayirish.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\sqrt{5}\sqrt{2}\sqrt{5}}{-4}
Faktor: 10=5\times 2. \sqrt{5\times 2} koʻpaytmasining kvadrat ildizini \sqrt{5}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing.
\frac{-18+6\sqrt{5}+2\sqrt{10}+2\times 5\sqrt{2}}{-4}
5 hosil qilish uchun \sqrt{5} va \sqrt{5} ni ko'paytirish.
\frac{-18+6\sqrt{5}+2\sqrt{10}+10\sqrt{2}}{-4}
10 hosil qilish uchun 2 va 5 ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}