x uchun yechish
x=-75
x=60
Grafik
Viktorina
Polynomial
5xshash muammolar:
\frac { 75 } { x } = \frac { 75 } { x + 15 } + \frac { 1 } { 4 }
Baham ko'rish
Klipbordga nusxa olish
\left(4x+60\right)\times 75=4x\times 75+4x\left(x+15\right)\times \frac{1}{4}
x qiymati -15,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4x\left(x+15\right) ga, x,x+15,4 ning eng kichik karralisiga ko‘paytiring.
300x+4500=4x\times 75+4x\left(x+15\right)\times \frac{1}{4}
4x+60 ga 75 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
300x+4500=300x+4x\left(x+15\right)\times \frac{1}{4}
300 hosil qilish uchun 4 va 75 ni ko'paytirish.
300x+4500=300x+x\left(x+15\right)
1 hosil qilish uchun 4 va \frac{1}{4} ni ko'paytirish.
300x+4500=300x+x^{2}+15x
x ga x+15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
300x+4500=315x+x^{2}
315x ni olish uchun 300x va 15x ni birlashtirish.
300x+4500-315x=x^{2}
Ikkala tarafdan 315x ni ayirish.
-15x+4500=x^{2}
-15x ni olish uchun 300x va -315x ni birlashtirish.
-15x+4500-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
-x^{2}-15x+4500=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-15 ab=-4500=-4500
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -x^{2}+ax+bx+4500 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-4500 2,-2250 3,-1500 4,-1125 5,-900 6,-750 9,-500 10,-450 12,-375 15,-300 18,-250 20,-225 25,-180 30,-150 36,-125 45,-100 50,-90 60,-75
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -4500-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-4500=-4499 2-2250=-2248 3-1500=-1497 4-1125=-1121 5-900=-895 6-750=-744 9-500=-491 10-450=-440 12-375=-363 15-300=-285 18-250=-232 20-225=-205 25-180=-155 30-150=-120 36-125=-89 45-100=-55 50-90=-40 60-75=-15
Har bir juftlik yigʻindisini hisoblang.
a=60 b=-75
Yechim – -15 yigʻindisini beruvchi juftlik.
\left(-x^{2}+60x\right)+\left(-75x+4500\right)
-x^{2}-15x+4500 ni \left(-x^{2}+60x\right)+\left(-75x+4500\right) sifatida qaytadan yozish.
x\left(-x+60\right)+75\left(-x+60\right)
Birinchi guruhda x ni va ikkinchi guruhda 75 ni faktordan chiqaring.
\left(-x+60\right)\left(x+75\right)
Distributiv funktsiyasidan foydalangan holda -x+60 umumiy terminini chiqaring.
x=60 x=-75
Tenglamani yechish uchun -x+60=0 va x+75=0 ni yeching.
\left(4x+60\right)\times 75=4x\times 75+4x\left(x+15\right)\times \frac{1}{4}
x qiymati -15,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4x\left(x+15\right) ga, x,x+15,4 ning eng kichik karralisiga ko‘paytiring.
300x+4500=4x\times 75+4x\left(x+15\right)\times \frac{1}{4}
4x+60 ga 75 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
300x+4500=300x+4x\left(x+15\right)\times \frac{1}{4}
300 hosil qilish uchun 4 va 75 ni ko'paytirish.
300x+4500=300x+x\left(x+15\right)
1 hosil qilish uchun 4 va \frac{1}{4} ni ko'paytirish.
300x+4500=300x+x^{2}+15x
x ga x+15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
300x+4500=315x+x^{2}
315x ni olish uchun 300x va 15x ni birlashtirish.
300x+4500-315x=x^{2}
Ikkala tarafdan 315x ni ayirish.
-15x+4500=x^{2}
-15x ni olish uchun 300x va -315x ni birlashtirish.
-15x+4500-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
-x^{2}-15x+4500=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-1\right)\times 4500}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -15 ni b va 4500 ni c bilan almashtiring.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-1\right)\times 4500}}{2\left(-1\right)}
-15 kvadratini chiqarish.
x=\frac{-\left(-15\right)±\sqrt{225+4\times 4500}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-15\right)±\sqrt{225+18000}}{2\left(-1\right)}
4 ni 4500 marotabaga ko'paytirish.
x=\frac{-\left(-15\right)±\sqrt{18225}}{2\left(-1\right)}
225 ni 18000 ga qo'shish.
x=\frac{-\left(-15\right)±135}{2\left(-1\right)}
18225 ning kvadrat ildizini chiqarish.
x=\frac{15±135}{2\left(-1\right)}
-15 ning teskarisi 15 ga teng.
x=\frac{15±135}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{150}{-2}
x=\frac{15±135}{-2} tenglamasini yeching, bunda ± musbat. 15 ni 135 ga qo'shish.
x=-75
150 ni -2 ga bo'lish.
x=-\frac{120}{-2}
x=\frac{15±135}{-2} tenglamasini yeching, bunda ± manfiy. 15 dan 135 ni ayirish.
x=60
-120 ni -2 ga bo'lish.
x=-75 x=60
Tenglama yechildi.
\left(4x+60\right)\times 75=4x\times 75+4x\left(x+15\right)\times \frac{1}{4}
x qiymati -15,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4x\left(x+15\right) ga, x,x+15,4 ning eng kichik karralisiga ko‘paytiring.
300x+4500=4x\times 75+4x\left(x+15\right)\times \frac{1}{4}
4x+60 ga 75 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
300x+4500=300x+4x\left(x+15\right)\times \frac{1}{4}
300 hosil qilish uchun 4 va 75 ni ko'paytirish.
300x+4500=300x+x\left(x+15\right)
1 hosil qilish uchun 4 va \frac{1}{4} ni ko'paytirish.
300x+4500=300x+x^{2}+15x
x ga x+15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
300x+4500=315x+x^{2}
315x ni olish uchun 300x va 15x ni birlashtirish.
300x+4500-315x=x^{2}
Ikkala tarafdan 315x ni ayirish.
-15x+4500=x^{2}
-15x ni olish uchun 300x va -315x ni birlashtirish.
-15x+4500-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
-15x-x^{2}=-4500
Ikkala tarafdan 4500 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-x^{2}-15x=-4500
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-15x}{-1}=-\frac{4500}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{15}{-1}\right)x=-\frac{4500}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+15x=-\frac{4500}{-1}
-15 ni -1 ga bo'lish.
x^{2}+15x=4500
-4500 ni -1 ga bo'lish.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=4500+\left(\frac{15}{2}\right)^{2}
15 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{15}{2} olish uchun. Keyin, \frac{15}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+15x+\frac{225}{4}=4500+\frac{225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{15}{2} kvadratini chiqarish.
x^{2}+15x+\frac{225}{4}=\frac{18225}{4}
4500 ni \frac{225}{4} ga qo'shish.
\left(x+\frac{15}{2}\right)^{2}=\frac{18225}{4}
x^{2}+15x+\frac{225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{18225}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{15}{2}=\frac{135}{2} x+\frac{15}{2}=-\frac{135}{2}
Qisqartirish.
x=60 x=-75
Tenglamaning ikkala tarafidan \frac{15}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}