x uchun yechish
x=2\sqrt{37}-2\approx 10,165525061
x=-2\sqrt{37}-2\approx -14,165525061
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+4\right)\times 7200\left(1+0\times 2\right)-x\times 7200=200x\left(x+4\right)
x qiymati -4,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+4\right) ga, x,x+4 ning eng kichik karralisiga ko‘paytiring.
\left(x+4\right)\times 7200\left(1+0\right)-x\times 7200=200x\left(x+4\right)
0 hosil qilish uchun 0 va 2 ni ko'paytirish.
\left(x+4\right)\times 7200\times 1-x\times 7200=200x\left(x+4\right)
1 olish uchun 1 va 0'ni qo'shing.
\left(x+4\right)\times 7200-x\times 7200=200x\left(x+4\right)
7200 hosil qilish uchun 7200 va 1 ni ko'paytirish.
7200x+28800-x\times 7200=200x\left(x+4\right)
x+4 ga 7200 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7200x+28800-x\times 7200=200x^{2}+800x
200x ga x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7200x+28800-x\times 7200-200x^{2}=800x
Ikkala tarafdan 200x^{2} ni ayirish.
7200x+28800-x\times 7200-200x^{2}-800x=0
Ikkala tarafdan 800x ni ayirish.
6400x+28800-x\times 7200-200x^{2}=0
6400x ni olish uchun 7200x va -800x ni birlashtirish.
6400x+28800-7200x-200x^{2}=0
-7200 hosil qilish uchun -1 va 7200 ni ko'paytirish.
-800x+28800-200x^{2}=0
-800x ni olish uchun 6400x va -7200x ni birlashtirish.
-200x^{2}-800x+28800=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-800\right)±\sqrt{\left(-800\right)^{2}-4\left(-200\right)\times 28800}}{2\left(-200\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -200 ni a, -800 ni b va 28800 ni c bilan almashtiring.
x=\frac{-\left(-800\right)±\sqrt{640000-4\left(-200\right)\times 28800}}{2\left(-200\right)}
-800 kvadratini chiqarish.
x=\frac{-\left(-800\right)±\sqrt{640000+800\times 28800}}{2\left(-200\right)}
-4 ni -200 marotabaga ko'paytirish.
x=\frac{-\left(-800\right)±\sqrt{640000+23040000}}{2\left(-200\right)}
800 ni 28800 marotabaga ko'paytirish.
x=\frac{-\left(-800\right)±\sqrt{23680000}}{2\left(-200\right)}
640000 ni 23040000 ga qo'shish.
x=\frac{-\left(-800\right)±800\sqrt{37}}{2\left(-200\right)}
23680000 ning kvadrat ildizini chiqarish.
x=\frac{800±800\sqrt{37}}{2\left(-200\right)}
-800 ning teskarisi 800 ga teng.
x=\frac{800±800\sqrt{37}}{-400}
2 ni -200 marotabaga ko'paytirish.
x=\frac{800\sqrt{37}+800}{-400}
x=\frac{800±800\sqrt{37}}{-400} tenglamasini yeching, bunda ± musbat. 800 ni 800\sqrt{37} ga qo'shish.
x=-2\sqrt{37}-2
800+800\sqrt{37} ni -400 ga bo'lish.
x=\frac{800-800\sqrt{37}}{-400}
x=\frac{800±800\sqrt{37}}{-400} tenglamasini yeching, bunda ± manfiy. 800 dan 800\sqrt{37} ni ayirish.
x=2\sqrt{37}-2
800-800\sqrt{37} ni -400 ga bo'lish.
x=-2\sqrt{37}-2 x=2\sqrt{37}-2
Tenglama yechildi.
\left(x+4\right)\times 7200\left(1+0\times 2\right)-x\times 7200=200x\left(x+4\right)
x qiymati -4,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+4\right) ga, x,x+4 ning eng kichik karralisiga ko‘paytiring.
\left(x+4\right)\times 7200\left(1+0\right)-x\times 7200=200x\left(x+4\right)
0 hosil qilish uchun 0 va 2 ni ko'paytirish.
\left(x+4\right)\times 7200\times 1-x\times 7200=200x\left(x+4\right)
1 olish uchun 1 va 0'ni qo'shing.
\left(x+4\right)\times 7200-x\times 7200=200x\left(x+4\right)
7200 hosil qilish uchun 7200 va 1 ni ko'paytirish.
7200x+28800-x\times 7200=200x\left(x+4\right)
x+4 ga 7200 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7200x+28800-x\times 7200=200x^{2}+800x
200x ga x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7200x+28800-x\times 7200-200x^{2}=800x
Ikkala tarafdan 200x^{2} ni ayirish.
7200x+28800-x\times 7200-200x^{2}-800x=0
Ikkala tarafdan 800x ni ayirish.
6400x+28800-x\times 7200-200x^{2}=0
6400x ni olish uchun 7200x va -800x ni birlashtirish.
6400x-x\times 7200-200x^{2}=-28800
Ikkala tarafdan 28800 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
6400x-7200x-200x^{2}=-28800
-7200 hosil qilish uchun -1 va 7200 ni ko'paytirish.
-800x-200x^{2}=-28800
-800x ni olish uchun 6400x va -7200x ni birlashtirish.
-200x^{2}-800x=-28800
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-200x^{2}-800x}{-200}=-\frac{28800}{-200}
Ikki tarafini -200 ga bo‘ling.
x^{2}+\left(-\frac{800}{-200}\right)x=-\frac{28800}{-200}
-200 ga bo'lish -200 ga ko'paytirishni bekor qiladi.
x^{2}+4x=-\frac{28800}{-200}
-800 ni -200 ga bo'lish.
x^{2}+4x=144
-28800 ni -200 ga bo'lish.
x^{2}+4x+2^{2}=144+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+4x+4=144+4
2 kvadratini chiqarish.
x^{2}+4x+4=148
144 ni 4 ga qo'shish.
\left(x+2\right)^{2}=148
x^{2}+4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+2\right)^{2}}=\sqrt{148}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+2=2\sqrt{37} x+2=-2\sqrt{37}
Qisqartirish.
x=2\sqrt{37}-2 x=-2\sqrt{37}-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}