Baholash
\frac{m^{2}\left(7m^{3}+28m^{2}+21m+6\right)}{\left(m+4\right)\left(7m+2\right)}
Omil
\frac{m^{2}\left(7m^{3}+28m^{2}+21m+6\right)}{\left(m+4\right)\left(7m+2\right)}
Viktorina
Polynomial
5xshash muammolar:
\frac { 7 m ^ { 4 } } { 7 m + 2 } + \frac { 3 m ^ { 2 } } { m + 4 } =
Baham ko'rish
Klipbordga nusxa olish
\frac{7m^{4}\left(m+4\right)}{\left(m+4\right)\left(7m+2\right)}+\frac{3m^{2}\left(7m+2\right)}{\left(m+4\right)\left(7m+2\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 7m+2 va m+4 ning eng kichik umumiy karralisi \left(m+4\right)\left(7m+2\right). \frac{7m^{4}}{7m+2} ni \frac{m+4}{m+4} marotabaga ko'paytirish. \frac{3m^{2}}{m+4} ni \frac{7m+2}{7m+2} marotabaga ko'paytirish.
\frac{7m^{4}\left(m+4\right)+3m^{2}\left(7m+2\right)}{\left(m+4\right)\left(7m+2\right)}
\frac{7m^{4}\left(m+4\right)}{\left(m+4\right)\left(7m+2\right)} va \frac{3m^{2}\left(7m+2\right)}{\left(m+4\right)\left(7m+2\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{7m^{5}+28m^{4}+21m^{3}+6m^{2}}{\left(m+4\right)\left(7m+2\right)}
7m^{4}\left(m+4\right)+3m^{2}\left(7m+2\right) ichidagi ko‘paytirishlarni bajaring.
\frac{7m^{5}+28m^{4}+21m^{3}+6m^{2}}{7m^{2}+30m+8}
\left(m+4\right)\left(7m+2\right) ni kengaytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}