Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x-2\right)\left(x-1\right)\times 7-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
x qiymati 1,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right)\left(x-1\right) ga, x-3,x-2,x-1 ning eng kichik karralisiga ko‘paytiring.
\left(x^{2}-3x+2\right)\times 7-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
7x^{2}-21x+14-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
x^{2}-3x+2 ga 7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-21x+14-\left(x^{2}-4x+3\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
x-3 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
7x^{2}-21x+14-\left(10x^{2}-40x+30\right)-\left(x-3\right)\left(x-2\right)\times 6=0
x^{2}-4x+3 ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-21x+14-10x^{2}+40x-30-\left(x-3\right)\left(x-2\right)\times 6=0
10x^{2}-40x+30 teskarisini topish uchun har birining teskarisini toping.
-3x^{2}-21x+14+40x-30-\left(x-3\right)\left(x-2\right)\times 6=0
-3x^{2} ni olish uchun 7x^{2} va -10x^{2} ni birlashtirish.
-3x^{2}+19x+14-30-\left(x-3\right)\left(x-2\right)\times 6=0
19x ni olish uchun -21x va 40x ni birlashtirish.
-3x^{2}+19x-16-\left(x-3\right)\left(x-2\right)\times 6=0
-16 olish uchun 14 dan 30 ni ayirish.
-3x^{2}+19x-16-\left(x^{2}-5x+6\right)\times 6=0
x-3 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-3x^{2}+19x-16-\left(6x^{2}-30x+36\right)=0
x^{2}-5x+6 ga 6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-3x^{2}+19x-16-6x^{2}+30x-36=0
6x^{2}-30x+36 teskarisini topish uchun har birining teskarisini toping.
-9x^{2}+19x-16+30x-36=0
-9x^{2} ni olish uchun -3x^{2} va -6x^{2} ni birlashtirish.
-9x^{2}+49x-16-36=0
49x ni olish uchun 19x va 30x ni birlashtirish.
-9x^{2}+49x-52=0
-52 olish uchun -16 dan 36 ni ayirish.
a+b=49 ab=-9\left(-52\right)=468
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -9x^{2}+ax+bx-52 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,468 2,234 3,156 4,117 6,78 9,52 12,39 13,36 18,26
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b musbat boʻlganda, a va b ikkisi ham musbat. 468-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1+468=469 2+234=236 3+156=159 4+117=121 6+78=84 9+52=61 12+39=51 13+36=49 18+26=44
Har bir juftlik yigʻindisini hisoblang.
a=36 b=13
Yechim – 49 yigʻindisini beruvchi juftlik.
\left(-9x^{2}+36x\right)+\left(13x-52\right)
-9x^{2}+49x-52 ni \left(-9x^{2}+36x\right)+\left(13x-52\right) sifatida qaytadan yozish.
9x\left(-x+4\right)-13\left(-x+4\right)
Birinchi guruhda 9x ni va ikkinchi guruhda -13 ni faktordan chiqaring.
\left(-x+4\right)\left(9x-13\right)
Distributiv funktsiyasidan foydalangan holda -x+4 umumiy terminini chiqaring.
x=4 x=\frac{13}{9}
Tenglamani yechish uchun -x+4=0 va 9x-13=0 ni yeching.
\left(x-2\right)\left(x-1\right)\times 7-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
x qiymati 1,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right)\left(x-1\right) ga, x-3,x-2,x-1 ning eng kichik karralisiga ko‘paytiring.
\left(x^{2}-3x+2\right)\times 7-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
7x^{2}-21x+14-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
x^{2}-3x+2 ga 7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-21x+14-\left(x^{2}-4x+3\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
x-3 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
7x^{2}-21x+14-\left(10x^{2}-40x+30\right)-\left(x-3\right)\left(x-2\right)\times 6=0
x^{2}-4x+3 ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-21x+14-10x^{2}+40x-30-\left(x-3\right)\left(x-2\right)\times 6=0
10x^{2}-40x+30 teskarisini topish uchun har birining teskarisini toping.
-3x^{2}-21x+14+40x-30-\left(x-3\right)\left(x-2\right)\times 6=0
-3x^{2} ni olish uchun 7x^{2} va -10x^{2} ni birlashtirish.
-3x^{2}+19x+14-30-\left(x-3\right)\left(x-2\right)\times 6=0
19x ni olish uchun -21x va 40x ni birlashtirish.
-3x^{2}+19x-16-\left(x-3\right)\left(x-2\right)\times 6=0
-16 olish uchun 14 dan 30 ni ayirish.
-3x^{2}+19x-16-\left(x^{2}-5x+6\right)\times 6=0
x-3 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-3x^{2}+19x-16-\left(6x^{2}-30x+36\right)=0
x^{2}-5x+6 ga 6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-3x^{2}+19x-16-6x^{2}+30x-36=0
6x^{2}-30x+36 teskarisini topish uchun har birining teskarisini toping.
-9x^{2}+19x-16+30x-36=0
-9x^{2} ni olish uchun -3x^{2} va -6x^{2} ni birlashtirish.
-9x^{2}+49x-16-36=0
49x ni olish uchun 19x va 30x ni birlashtirish.
-9x^{2}+49x-52=0
-52 olish uchun -16 dan 36 ni ayirish.
x=\frac{-49±\sqrt{49^{2}-4\left(-9\right)\left(-52\right)}}{2\left(-9\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -9 ni a, 49 ni b va -52 ni c bilan almashtiring.
x=\frac{-49±\sqrt{2401-4\left(-9\right)\left(-52\right)}}{2\left(-9\right)}
49 kvadratini chiqarish.
x=\frac{-49±\sqrt{2401+36\left(-52\right)}}{2\left(-9\right)}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-49±\sqrt{2401-1872}}{2\left(-9\right)}
36 ni -52 marotabaga ko'paytirish.
x=\frac{-49±\sqrt{529}}{2\left(-9\right)}
2401 ni -1872 ga qo'shish.
x=\frac{-49±23}{2\left(-9\right)}
529 ning kvadrat ildizini chiqarish.
x=\frac{-49±23}{-18}
2 ni -9 marotabaga ko'paytirish.
x=-\frac{26}{-18}
x=\frac{-49±23}{-18} tenglamasini yeching, bunda ± musbat. -49 ni 23 ga qo'shish.
x=\frac{13}{9}
\frac{-26}{-18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{72}{-18}
x=\frac{-49±23}{-18} tenglamasini yeching, bunda ± manfiy. -49 dan 23 ni ayirish.
x=4
-72 ni -18 ga bo'lish.
x=\frac{13}{9} x=4
Tenglama yechildi.
\left(x-2\right)\left(x-1\right)\times 7-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
x qiymati 1,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right)\left(x-1\right) ga, x-3,x-2,x-1 ning eng kichik karralisiga ko‘paytiring.
\left(x^{2}-3x+2\right)\times 7-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
7x^{2}-21x+14-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
x^{2}-3x+2 ga 7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-21x+14-\left(x^{2}-4x+3\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
x-3 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
7x^{2}-21x+14-\left(10x^{2}-40x+30\right)-\left(x-3\right)\left(x-2\right)\times 6=0
x^{2}-4x+3 ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}-21x+14-10x^{2}+40x-30-\left(x-3\right)\left(x-2\right)\times 6=0
10x^{2}-40x+30 teskarisini topish uchun har birining teskarisini toping.
-3x^{2}-21x+14+40x-30-\left(x-3\right)\left(x-2\right)\times 6=0
-3x^{2} ni olish uchun 7x^{2} va -10x^{2} ni birlashtirish.
-3x^{2}+19x+14-30-\left(x-3\right)\left(x-2\right)\times 6=0
19x ni olish uchun -21x va 40x ni birlashtirish.
-3x^{2}+19x-16-\left(x-3\right)\left(x-2\right)\times 6=0
-16 olish uchun 14 dan 30 ni ayirish.
-3x^{2}+19x-16-\left(x^{2}-5x+6\right)\times 6=0
x-3 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-3x^{2}+19x-16-\left(6x^{2}-30x+36\right)=0
x^{2}-5x+6 ga 6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-3x^{2}+19x-16-6x^{2}+30x-36=0
6x^{2}-30x+36 teskarisini topish uchun har birining teskarisini toping.
-9x^{2}+19x-16+30x-36=0
-9x^{2} ni olish uchun -3x^{2} va -6x^{2} ni birlashtirish.
-9x^{2}+49x-16-36=0
49x ni olish uchun 19x va 30x ni birlashtirish.
-9x^{2}+49x-52=0
-52 olish uchun -16 dan 36 ni ayirish.
-9x^{2}+49x=52
52 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{-9x^{2}+49x}{-9}=\frac{52}{-9}
Ikki tarafini -9 ga bo‘ling.
x^{2}+\frac{49}{-9}x=\frac{52}{-9}
-9 ga bo'lish -9 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{49}{9}x=\frac{52}{-9}
49 ni -9 ga bo'lish.
x^{2}-\frac{49}{9}x=-\frac{52}{9}
52 ni -9 ga bo'lish.
x^{2}-\frac{49}{9}x+\left(-\frac{49}{18}\right)^{2}=-\frac{52}{9}+\left(-\frac{49}{18}\right)^{2}
-\frac{49}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{49}{18} olish uchun. Keyin, -\frac{49}{18} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{49}{9}x+\frac{2401}{324}=-\frac{52}{9}+\frac{2401}{324}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{49}{18} kvadratini chiqarish.
x^{2}-\frac{49}{9}x+\frac{2401}{324}=\frac{529}{324}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{52}{9} ni \frac{2401}{324} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{49}{18}\right)^{2}=\frac{529}{324}
x^{2}-\frac{49}{9}x+\frac{2401}{324} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{49}{18}\right)^{2}}=\sqrt{\frac{529}{324}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{49}{18}=\frac{23}{18} x-\frac{49}{18}=-\frac{23}{18}
Qisqartirish.
x=4 x=\frac{13}{9}
\frac{49}{18} ni tenglamaning ikkala tarafiga qo'shish.