Baholash
\frac{x+7}{x\left(x+1\right)}
x ga nisbatan hosilani topish
-\frac{x^{2}+14x+7}{\left(x\left(x+1\right)\right)^{2}}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{7\left(x+1\right)}{x\left(x+1\right)}-\frac{6x}{x\left(x+1\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x va x+1 ning eng kichik umumiy karralisi x\left(x+1\right). \frac{7}{x} ni \frac{x+1}{x+1} marotabaga ko'paytirish. \frac{6}{x+1} ni \frac{x}{x} marotabaga ko'paytirish.
\frac{7\left(x+1\right)-6x}{x\left(x+1\right)}
\frac{7\left(x+1\right)}{x\left(x+1\right)} va \frac{6x}{x\left(x+1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{7x+7-6x}{x\left(x+1\right)}
7\left(x+1\right)-6x ichidagi ko‘paytirishlarni bajaring.
\frac{x+7}{x\left(x+1\right)}
7x+7-6x kabi iboralarga o‘xshab birlashtiring.
\frac{x+7}{x^{2}+x}
x\left(x+1\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\left(x+1\right)}{x\left(x+1\right)}-\frac{6x}{x\left(x+1\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x va x+1 ning eng kichik umumiy karralisi x\left(x+1\right). \frac{7}{x} ni \frac{x+1}{x+1} marotabaga ko'paytirish. \frac{6}{x+1} ni \frac{x}{x} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\left(x+1\right)-6x}{x\left(x+1\right)})
\frac{7\left(x+1\right)}{x\left(x+1\right)} va \frac{6x}{x\left(x+1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+7-6x}{x\left(x+1\right)})
7\left(x+1\right)-6x ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x\left(x+1\right)})
7x+7-6x kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x^{2}+x})
x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+7)-\left(x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})}{\left(x^{2}+x^{1}\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{2}+x^{1}\right)x^{1-1}-\left(x^{1}+7\right)\left(2x^{2-1}+x^{1-1}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{2}+x^{1}\right)x^{0}-\left(x^{1}+7\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Qisqartirish.
\frac{x^{2}x^{0}+x^{1}x^{0}-\left(x^{1}+7\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
x^{2}+x^{1} ni x^{0} marotabaga ko'paytirish.
\frac{x^{2}x^{0}+x^{1}x^{0}-\left(x^{1}\times 2x^{1}+x^{1}x^{0}+7\times 2x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
x^{1}+7 ni 2x^{1}+x^{0} marotabaga ko'paytirish.
\frac{x^{2}+x^{1}-\left(2x^{1+1}+x^{1}+7\times 2x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{x^{2}+x^{1}-\left(2x^{2}+x^{1}+14x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Qisqartirish.
\frac{-x^{2}-14x^{1}-7x^{0}}{\left(x^{2}+x^{1}\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-x^{2}-14x-7x^{0}}{\left(x^{2}+x\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{-x^{2}-14x-7}{\left(x^{2}+x\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}