j uchun yechish
j=\frac{5}{57}\approx 0,087719298
Baham ko'rish
Klipbordga nusxa olish
\left(3j-2\right)\times 7=\left(-1-4j\right)\times 9
j qiymati -\frac{1}{4},\frac{2}{3} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(3j-2\right)\left(4j+1\right) ga, 4j+1,2-3j ning eng kichik karralisiga ko‘paytiring.
21j-14=\left(-1-4j\right)\times 9
3j-2 ga 7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21j-14=-9-36j
-1-4j ga 9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21j-14+36j=-9
36j ni ikki tarafga qo’shing.
57j-14=-9
57j ni olish uchun 21j va 36j ni birlashtirish.
57j=-9+14
14 ni ikki tarafga qo’shing.
57j=5
5 olish uchun -9 va 14'ni qo'shing.
j=\frac{5}{57}
Ikki tarafini 57 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}