Baholash
\frac{\sqrt{2}-10}{14}\approx -0,61327046
Baham ko'rish
Klipbordga nusxa olish
\frac{7\left(-10+\sqrt{2}\right)}{\left(-10-\sqrt{2}\right)\left(-10+\sqrt{2}\right)}
\frac{7}{-10-\sqrt{2}} maxrajini -10+\sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{7\left(-10+\sqrt{2}\right)}{\left(-10\right)^{2}-\left(\sqrt{2}\right)^{2}}
Hisoblang: \left(-10-\sqrt{2}\right)\left(-10+\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(-10+\sqrt{2}\right)}{100-2}
-10 kvadratini chiqarish. \sqrt{2} kvadratini chiqarish.
\frac{7\left(-10+\sqrt{2}\right)}{98}
98 olish uchun 100 dan 2 ni ayirish.
\frac{1}{14}\left(-10+\sqrt{2}\right)
\frac{1}{14}\left(-10+\sqrt{2}\right) ni olish uchun 7\left(-10+\sqrt{2}\right) ni 98 ga bo‘ling.
\frac{1}{14}\left(-10\right)+\frac{1}{14}\sqrt{2}
\frac{1}{14} ga -10+\sqrt{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{-10}{14}+\frac{1}{14}\sqrt{2}
\frac{-10}{14} hosil qilish uchun \frac{1}{14} va -10 ni ko'paytirish.
-\frac{5}{7}+\frac{1}{14}\sqrt{2}
\frac{-10}{14} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}