x uchun yechish
x = \frac{4216}{3} = 1405\frac{1}{3} \approx 1405,333333333
Grafik
Viktorina
Linear Equation
5xshash muammolar:
\frac { 65 } { 100 } \times x = \frac { 85 } { 100 } ( 2480 - x )
Baham ko'rish
Klipbordga nusxa olish
\frac{13}{20}x=\frac{85}{100}\left(2480-x\right)
\frac{65}{100} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{13}{20}x=\frac{17}{20}\left(2480-x\right)
\frac{85}{100} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{13}{20}x=\frac{17}{20}\times 2480+\frac{17}{20}\left(-1\right)x
\frac{17}{20} ga 2480-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{13}{20}x=\frac{17\times 2480}{20}+\frac{17}{20}\left(-1\right)x
\frac{17}{20}\times 2480 ni yagona kasrga aylantiring.
\frac{13}{20}x=\frac{42160}{20}+\frac{17}{20}\left(-1\right)x
42160 hosil qilish uchun 17 va 2480 ni ko'paytirish.
\frac{13}{20}x=2108+\frac{17}{20}\left(-1\right)x
2108 ni olish uchun 42160 ni 20 ga bo‘ling.
\frac{13}{20}x=2108-\frac{17}{20}x
-\frac{17}{20} hosil qilish uchun \frac{17}{20} va -1 ni ko'paytirish.
\frac{13}{20}x+\frac{17}{20}x=2108
\frac{17}{20}x ni ikki tarafga qo’shing.
\frac{3}{2}x=2108
\frac{3}{2}x ni olish uchun \frac{13}{20}x va \frac{17}{20}x ni birlashtirish.
x=2108\times \frac{2}{3}
Ikki tarafini \frac{2}{3} va teskari kasri \frac{3}{2} ga ko‘paytiring.
x=\frac{2108\times 2}{3}
2108\times \frac{2}{3} ni yagona kasrga aylantiring.
x=\frac{4216}{3}
4216 hosil qilish uchun 2108 va 2 ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}