Omil
\frac{\left(3y+4\right)\left(9y^{2}-12y+16\right)}{27}
Baholash
y^{3}+\frac{64}{27}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{64+27y^{3}}{27}
\frac{1}{27} omili.
\left(3y+4\right)\left(9y^{2}-12y+16\right)
Hisoblang: 64+27y^{3}. 64+27y^{3} ni \left(3y\right)^{3}+4^{3} sifatida qaytadan yozish. Kublar yigʻindisini ushbu formula bilan hisoblash mumkin: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\frac{\left(3y+4\right)\left(9y^{2}-12y+16\right)}{27}
Toʻliq ajratilgan ifodani qaytadan yozing. Koʻphadli 9y^{2}-12y+16 faktorlanmagan, chunki unda ratsional ildizlar topilmadi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}