Baholash
\frac{5yx^{2}}{2}
x ga nisbatan hosilani topish
5xy
Baham ko'rish
Klipbordga nusxa olish
\frac{60^{1}x^{3}y^{2}}{24^{1}x^{1}y^{1}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
\frac{60^{1}}{24^{1}}x^{3-1}y^{2-1}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{60^{1}}{24^{1}}x^{2}y^{2-1}
3 dan 1 ni ayirish.
\frac{60^{1}}{24^{1}}x^{2}y^{1}
2 dan 1 ni ayirish.
\frac{5}{2}x^{2}y
\frac{60}{24} ulushini 12 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{60y^{2}}{24y}x^{3-1})
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5y}{2}x^{2})
Arifmetik hisobni amalga oshirish.
2\times \frac{5y}{2}x^{2-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
5yx^{1}
Arifmetik hisobni amalga oshirish.
5yx
Har qanday t sharti uchun t^{1}=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}