x uchun yechish
x=-5
x=20
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-10\right)\times 60+\left(x+10\right)\times 60=8\left(x-10\right)\left(x+10\right)
x qiymati -10,10 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-10\right)\left(x+10\right) ga, x+10,x-10 ning eng kichik karralisiga ko‘paytiring.
60x-600+\left(x+10\right)\times 60=8\left(x-10\right)\left(x+10\right)
x-10 ga 60 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
60x-600+60x+600=8\left(x-10\right)\left(x+10\right)
x+10 ga 60 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
120x-600+600=8\left(x-10\right)\left(x+10\right)
120x ni olish uchun 60x va 60x ni birlashtirish.
120x=8\left(x-10\right)\left(x+10\right)
0 olish uchun -600 va 600'ni qo'shing.
120x=\left(8x-80\right)\left(x+10\right)
8 ga x-10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
120x=8x^{2}-800
8x-80 ga x+10 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
120x-8x^{2}=-800
Ikkala tarafdan 8x^{2} ni ayirish.
120x-8x^{2}+800=0
800 ni ikki tarafga qo’shing.
-8x^{2}+120x+800=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-120±\sqrt{120^{2}-4\left(-8\right)\times 800}}{2\left(-8\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -8 ni a, 120 ni b va 800 ni c bilan almashtiring.
x=\frac{-120±\sqrt{14400-4\left(-8\right)\times 800}}{2\left(-8\right)}
120 kvadratini chiqarish.
x=\frac{-120±\sqrt{14400+32\times 800}}{2\left(-8\right)}
-4 ni -8 marotabaga ko'paytirish.
x=\frac{-120±\sqrt{14400+25600}}{2\left(-8\right)}
32 ni 800 marotabaga ko'paytirish.
x=\frac{-120±\sqrt{40000}}{2\left(-8\right)}
14400 ni 25600 ga qo'shish.
x=\frac{-120±200}{2\left(-8\right)}
40000 ning kvadrat ildizini chiqarish.
x=\frac{-120±200}{-16}
2 ni -8 marotabaga ko'paytirish.
x=\frac{80}{-16}
x=\frac{-120±200}{-16} tenglamasini yeching, bunda ± musbat. -120 ni 200 ga qo'shish.
x=-5
80 ni -16 ga bo'lish.
x=-\frac{320}{-16}
x=\frac{-120±200}{-16} tenglamasini yeching, bunda ± manfiy. -120 dan 200 ni ayirish.
x=20
-320 ni -16 ga bo'lish.
x=-5 x=20
Tenglama yechildi.
\left(x-10\right)\times 60+\left(x+10\right)\times 60=8\left(x-10\right)\left(x+10\right)
x qiymati -10,10 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-10\right)\left(x+10\right) ga, x+10,x-10 ning eng kichik karralisiga ko‘paytiring.
60x-600+\left(x+10\right)\times 60=8\left(x-10\right)\left(x+10\right)
x-10 ga 60 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
60x-600+60x+600=8\left(x-10\right)\left(x+10\right)
x+10 ga 60 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
120x-600+600=8\left(x-10\right)\left(x+10\right)
120x ni olish uchun 60x va 60x ni birlashtirish.
120x=8\left(x-10\right)\left(x+10\right)
0 olish uchun -600 va 600'ni qo'shing.
120x=\left(8x-80\right)\left(x+10\right)
8 ga x-10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
120x=8x^{2}-800
8x-80 ga x+10 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
120x-8x^{2}=-800
Ikkala tarafdan 8x^{2} ni ayirish.
-8x^{2}+120x=-800
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-8x^{2}+120x}{-8}=-\frac{800}{-8}
Ikki tarafini -8 ga bo‘ling.
x^{2}+\frac{120}{-8}x=-\frac{800}{-8}
-8 ga bo'lish -8 ga ko'paytirishni bekor qiladi.
x^{2}-15x=-\frac{800}{-8}
120 ni -8 ga bo'lish.
x^{2}-15x=100
-800 ni -8 ga bo'lish.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=100+\left(-\frac{15}{2}\right)^{2}
-15 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{15}{2} olish uchun. Keyin, -\frac{15}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-15x+\frac{225}{4}=100+\frac{225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{15}{2} kvadratini chiqarish.
x^{2}-15x+\frac{225}{4}=\frac{625}{4}
100 ni \frac{225}{4} ga qo'shish.
\left(x-\frac{15}{2}\right)^{2}=\frac{625}{4}
x^{2}-15x+\frac{225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{15}{2}=\frac{25}{2} x-\frac{15}{2}=-\frac{25}{2}
Qisqartirish.
x=20 x=-5
\frac{15}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}