x uchun yechish (complex solution)
x\in \mathrm{C}\setminus -6,6,0,-12,3
x uchun yechish
x\in \mathrm{R}\setminus 6,-6,0,3,-12
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{6}\left(x+6\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
x qiymati -6,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x\left(x+6\right) ga ko'paytirish.
\left(\frac{1}{6}x+1\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
\frac{1}{6} ga x+6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(3x+\frac{1}{6}x^{2}+12\right)\times \frac{6x-36}{x^{2}-36}=x+12
\frac{1}{6}x+1 ga 12+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x\times \frac{6x-36}{x^{2}-36}+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
3x+\frac{1}{6}x^{2}+12 ga \frac{6x-36}{x^{2}-36} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
3\times \frac{6x-36}{x^{2}-36} ni yagona kasrga aylantiring.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+12\times \frac{6x-36}{x^{2}-36}=x+12
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{6} ni \frac{6x-36}{x^{2}-36} ga ko‘paytiring.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
12\times \frac{6x-36}{x^{2}-36} ni yagona kasrga aylantiring.
\frac{18x-108}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
3 ga 6x-36 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
\frac{18x-108}{x^{2}-36}x ni yagona kasrga aylantiring.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6\left(x-6\right)}{6\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
\frac{6x-36}{6\left(x^{2}-36\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Surat va maxrajdagi ikkala 6 ni qisqartiring.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2} ni yagona kasrga aylantiring.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
12 ga 6x-36 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Faktor: x^{2}-36.
\frac{\left(18x-108\right)x+\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)} va \frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{18x^{2}-108x+x^{3}-6x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
\left(18x-108\right)x+\left(x-6\right)x^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
18x^{2}-108x+x^{3}-6x^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Faktor: x^{2}-36.
\frac{12x^{2}-108x+x^{3}+72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)} va \frac{72x-432}{\left(x-6\right)\left(x+6\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}=x+12
12x^{2}-108x+x^{3}+72x-432 kabi iboralarga o‘xshab birlashtiring.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}=x+12
Hisoblang: \left(x-6\right)\left(x+6\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 6 kvadratini chiqarish.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}-x=12
Ikkala tarafdan x ni ayirish.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-x=12
Faktor: x^{2}-36.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-\frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x ni \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} marotabaga ko'paytirish.
\frac{12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)} va \frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x}{\left(x-6\right)\left(x+6\right)}=12
12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right) ichidagi ko‘paytirishlarni bajaring.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}=12
12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x kabi iboralarga o‘xshab birlashtiring.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-12=0
Ikkala tarafdan 12 ni ayirish.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-\frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 12 ni \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} marotabaga ko'paytirish.
\frac{12x^{2}-432-12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)} va \frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{12x^{2}-432-12x^{2}-72x+72x+432}{\left(x-6\right)\left(x+6\right)}=0
12x^{2}-432-12\left(x-6\right)\left(x+6\right) ichidagi ko‘paytirishlarni bajaring.
\frac{0}{\left(x-6\right)\left(x+6\right)}=0
12x^{2}-432-12x^{2}-72x+72x+432 kabi iboralarga o‘xshab birlashtiring.
0=0
x qiymati -6,6 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-6\right)\left(x+6\right) ga ko'paytirish.
x\in \mathrm{C}
Bu har qanday x uchun to‘g‘ri.
x\in \mathrm{C}\setminus -6,0,6
x qiymati -6,6,0 qiymatlaridan birortasiga teng bo‘lmaydi.
\frac{1}{6}\left(x+6\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
x qiymati -6,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x\left(x+6\right) ga ko'paytirish.
\left(\frac{1}{6}x+1\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
\frac{1}{6} ga x+6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(3x+\frac{1}{6}x^{2}+12\right)\times \frac{6x-36}{x^{2}-36}=x+12
\frac{1}{6}x+1 ga 12+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x\times \frac{6x-36}{x^{2}-36}+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
3x+\frac{1}{6}x^{2}+12 ga \frac{6x-36}{x^{2}-36} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
3\times \frac{6x-36}{x^{2}-36} ni yagona kasrga aylantiring.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+12\times \frac{6x-36}{x^{2}-36}=x+12
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{6} ni \frac{6x-36}{x^{2}-36} ga ko‘paytiring.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
12\times \frac{6x-36}{x^{2}-36} ni yagona kasrga aylantiring.
\frac{18x-108}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
3 ga 6x-36 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
\frac{18x-108}{x^{2}-36}x ni yagona kasrga aylantiring.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6\left(x-6\right)}{6\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
\frac{6x-36}{6\left(x^{2}-36\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Surat va maxrajdagi ikkala 6 ni qisqartiring.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2} ni yagona kasrga aylantiring.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
12 ga 6x-36 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Faktor: x^{2}-36.
\frac{\left(18x-108\right)x+\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)} va \frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{18x^{2}-108x+x^{3}-6x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
\left(18x-108\right)x+\left(x-6\right)x^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
18x^{2}-108x+x^{3}-6x^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Faktor: x^{2}-36.
\frac{12x^{2}-108x+x^{3}+72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)} va \frac{72x-432}{\left(x-6\right)\left(x+6\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}=x+12
12x^{2}-108x+x^{3}+72x-432 kabi iboralarga o‘xshab birlashtiring.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}=x+12
Hisoblang: \left(x-6\right)\left(x+6\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 6 kvadratini chiqarish.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}-x=12
Ikkala tarafdan x ni ayirish.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-x=12
Faktor: x^{2}-36.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-\frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x ni \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} marotabaga ko'paytirish.
\frac{12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)} va \frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x}{\left(x-6\right)\left(x+6\right)}=12
12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right) ichidagi ko‘paytirishlarni bajaring.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}=12
12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x kabi iboralarga o‘xshab birlashtiring.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-12=0
Ikkala tarafdan 12 ni ayirish.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-\frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 12 ni \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} marotabaga ko'paytirish.
\frac{12x^{2}-432-12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)} va \frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{12x^{2}-432-12x^{2}-72x+72x+432}{\left(x-6\right)\left(x+6\right)}=0
12x^{2}-432-12\left(x-6\right)\left(x+6\right) ichidagi ko‘paytirishlarni bajaring.
\frac{0}{\left(x-6\right)\left(x+6\right)}=0
12x^{2}-432-12x^{2}-72x+72x+432 kabi iboralarga o‘xshab birlashtiring.
0=0
x qiymati -6,6 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-6\right)\left(x+6\right) ga ko'paytirish.
x\in \mathrm{R}
Bu har qanday x uchun to‘g‘ri.
x\in \mathrm{R}\setminus -6,0,6
x qiymati -6,6,0 qiymatlaridan birortasiga teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}