Baholash
\frac{xy}{5x+6y}
Kengaytirish
\frac{xy}{5x+6y}
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(-5\times \frac{1}{y}x+6\right)\times \frac{1}{x}}{\left(-25y^{-2}x^{2}+36\right)x^{-2}}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{\left(-5\times \frac{1}{y}x+6\right)x^{1}}{-25y^{-2}x^{2}+36}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{-5\times \frac{1}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Ifodani kengaytiring.
\frac{\frac{-5}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
-5\times \frac{1}{y} ni yagona kasrga aylantiring.
\frac{\frac{-5x^{2}}{y}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
\frac{-5}{y}x^{2} ni yagona kasrga aylantiring.
\frac{\frac{-5x^{2}}{y}+\frac{6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 6x ni \frac{y}{y} marotabaga ko'paytirish.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
\frac{-5x^{2}}{y} va \frac{6xy}{y} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{x}{y}\right)^{2}}
\frac{1}{y}x ni yagona kasrga aylantiring.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \frac{x^{2}}{y^{2}}}
\frac{x}{y}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\frac{-5x^{2}+6xy}{y}}{36+\frac{-25x^{2}}{y^{2}}}
-25\times \frac{x^{2}}{y^{2}} ni yagona kasrga aylantiring.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}}{y^{2}}+\frac{-25x^{2}}{y^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 36 ni \frac{y^{2}}{y^{2}} marotabaga ko'paytirish.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}-25x^{2}}{y^{2}}}
\frac{36y^{2}}{y^{2}} va \frac{-25x^{2}}{y^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\left(-5x^{2}+6xy\right)y^{2}}{y\left(36y^{2}-25x^{2}\right)}
\frac{-5x^{2}+6xy}{y} ni \frac{36y^{2}-25x^{2}}{y^{2}} ga bo'lish \frac{-5x^{2}+6xy}{y} ga k'paytirish \frac{36y^{2}-25x^{2}}{y^{2}} ga qaytarish.
\frac{y\left(-5x^{2}+6xy\right)}{-25x^{2}+36y^{2}}
Surat va maxrajdagi ikkala y ni qisqartiring.
\frac{xy\left(-5x+6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{-xy\left(5x-6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
-5x+6y mislodagi manfiy ishorani chiqarib tashlang.
\frac{-xy}{-5x-6y}
Surat va maxrajdagi ikkala 5x-6y ni qisqartiring.
\frac{\left(-5\times \frac{1}{y}x+6\right)\times \frac{1}{x}}{\left(-25y^{-2}x^{2}+36\right)x^{-2}}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{\left(-5\times \frac{1}{y}x+6\right)x^{1}}{-25y^{-2}x^{2}+36}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{-5\times \frac{1}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Ifodani kengaytiring.
\frac{\frac{-5}{y}x^{2}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
-5\times \frac{1}{y} ni yagona kasrga aylantiring.
\frac{\frac{-5x^{2}}{y}+6x}{36-25\times \left(\frac{1}{y}x\right)^{2}}
\frac{-5}{y}x^{2} ni yagona kasrga aylantiring.
\frac{\frac{-5x^{2}}{y}+\frac{6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 6x ni \frac{y}{y} marotabaga ko'paytirish.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{1}{y}x\right)^{2}}
\frac{-5x^{2}}{y} va \frac{6xy}{y} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \left(\frac{x}{y}\right)^{2}}
\frac{1}{y}x ni yagona kasrga aylantiring.
\frac{\frac{-5x^{2}+6xy}{y}}{36-25\times \frac{x^{2}}{y^{2}}}
\frac{x}{y}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
\frac{\frac{-5x^{2}+6xy}{y}}{36+\frac{-25x^{2}}{y^{2}}}
-25\times \frac{x^{2}}{y^{2}} ni yagona kasrga aylantiring.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}}{y^{2}}+\frac{-25x^{2}}{y^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 36 ni \frac{y^{2}}{y^{2}} marotabaga ko'paytirish.
\frac{\frac{-5x^{2}+6xy}{y}}{\frac{36y^{2}-25x^{2}}{y^{2}}}
\frac{36y^{2}}{y^{2}} va \frac{-25x^{2}}{y^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\left(-5x^{2}+6xy\right)y^{2}}{y\left(36y^{2}-25x^{2}\right)}
\frac{-5x^{2}+6xy}{y} ni \frac{36y^{2}-25x^{2}}{y^{2}} ga bo'lish \frac{-5x^{2}+6xy}{y} ga k'paytirish \frac{36y^{2}-25x^{2}}{y^{2}} ga qaytarish.
\frac{y\left(-5x^{2}+6xy\right)}{-25x^{2}+36y^{2}}
Surat va maxrajdagi ikkala y ni qisqartiring.
\frac{xy\left(-5x+6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{-xy\left(5x-6y\right)}{\left(-5x-6y\right)\left(5x-6y\right)}
-5x+6y mislodagi manfiy ishorani chiqarib tashlang.
\frac{-xy}{-5x-6y}
Surat va maxrajdagi ikkala 5x-6y ni qisqartiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}