Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{6i\left(7+3i\right)}{\left(7-3i\right)\left(7+3i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 7+3i.
\frac{6i\left(7+3i\right)}{7^{2}-3^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6i\left(7+3i\right)}{58}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{6i\times 7+6\times 3i^{2}}{58}
6i ni 7+3i marotabaga ko'paytirish.
\frac{6i\times 7+6\times 3\left(-1\right)}{58}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{-18+42i}{58}
6i\times 7+6\times 3\left(-1\right) ichidagi ko‘paytirishlarni bajaring. Shartlarni qayta saralash.
-\frac{9}{29}+\frac{21}{29}i
-\frac{9}{29}+\frac{21}{29}i ni olish uchun -18+42i ni 58 ga bo‘ling.
Re(\frac{6i\left(7+3i\right)}{\left(7-3i\right)\left(7+3i\right)})
\frac{6i}{7-3i}ning surat va maxrajini murakkab tutash maxraj 7+3i bilan ko‘paytiring.
Re(\frac{6i\left(7+3i\right)}{7^{2}-3^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{6i\left(7+3i\right)}{58})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{6i\times 7+6\times 3i^{2}}{58})
6i ni 7+3i marotabaga ko'paytirish.
Re(\frac{6i\times 7+6\times 3\left(-1\right)}{58})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{-18+42i}{58})
6i\times 7+6\times 3\left(-1\right) ichidagi ko‘paytirishlarni bajaring. Shartlarni qayta saralash.
Re(-\frac{9}{29}+\frac{21}{29}i)
-\frac{9}{29}+\frac{21}{29}i ni olish uchun -18+42i ni 58 ga bo‘ling.
-\frac{9}{29}
-\frac{9}{29}+\frac{21}{29}i ning real qismi – -\frac{9}{29}.