k uchun yechish
k=-1
k=1
Baham ko'rish
Klipbordga nusxa olish
4\left(6\left(k^{2}+1\right)^{2}-\left(3k^{2}-1\right)^{2}\right)=5\left(3k^{2}+1\right)^{2}
Tenglamaning ikkala tarafini 4\left(3k^{2}+1\right)^{2} ga, \left(3k^{2}+1\right)^{2},4 ning eng kichik karralisiga ko‘paytiring.
4\left(6\left(\left(k^{2}\right)^{2}+2k^{2}+1\right)-\left(3k^{2}-1\right)^{2}\right)=5\left(3k^{2}+1\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(k^{2}+1\right)^{2} kengaytirilishi uchun ishlating.
4\left(6\left(k^{4}+2k^{2}+1\right)-\left(3k^{2}-1\right)^{2}\right)=5\left(3k^{2}+1\right)^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
4\left(6k^{4}+12k^{2}+6-\left(3k^{2}-1\right)^{2}\right)=5\left(3k^{2}+1\right)^{2}
6 ga k^{4}+2k^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4\left(6k^{4}+12k^{2}+6-\left(9\left(k^{2}\right)^{2}-6k^{2}+1\right)\right)=5\left(3k^{2}+1\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3k^{2}-1\right)^{2} kengaytirilishi uchun ishlating.
4\left(6k^{4}+12k^{2}+6-\left(9k^{4}-6k^{2}+1\right)\right)=5\left(3k^{2}+1\right)^{2}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
4\left(6k^{4}+12k^{2}+6-9k^{4}+6k^{2}-1\right)=5\left(3k^{2}+1\right)^{2}
9k^{4}-6k^{2}+1 teskarisini topish uchun har birining teskarisini toping.
4\left(-3k^{4}+12k^{2}+6+6k^{2}-1\right)=5\left(3k^{2}+1\right)^{2}
-3k^{4} ni olish uchun 6k^{4} va -9k^{4} ni birlashtirish.
4\left(-3k^{4}+18k^{2}+6-1\right)=5\left(3k^{2}+1\right)^{2}
18k^{2} ni olish uchun 12k^{2} va 6k^{2} ni birlashtirish.
4\left(-3k^{4}+18k^{2}+5\right)=5\left(3k^{2}+1\right)^{2}
5 olish uchun 6 dan 1 ni ayirish.
-12k^{4}+72k^{2}+20=5\left(3k^{2}+1\right)^{2}
4 ga -3k^{4}+18k^{2}+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-12k^{4}+72k^{2}+20=5\left(9\left(k^{2}\right)^{2}+6k^{2}+1\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3k^{2}+1\right)^{2} kengaytirilishi uchun ishlating.
-12k^{4}+72k^{2}+20=5\left(9k^{4}+6k^{2}+1\right)
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
-12k^{4}+72k^{2}+20=45k^{4}+30k^{2}+5
5 ga 9k^{4}+6k^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-12k^{4}+72k^{2}+20-45k^{4}=30k^{2}+5
Ikkala tarafdan 45k^{4} ni ayirish.
-57k^{4}+72k^{2}+20=30k^{2}+5
-57k^{4} ni olish uchun -12k^{4} va -45k^{4} ni birlashtirish.
-57k^{4}+72k^{2}+20-30k^{2}=5
Ikkala tarafdan 30k^{2} ni ayirish.
-57k^{4}+42k^{2}+20=5
42k^{2} ni olish uchun 72k^{2} va -30k^{2} ni birlashtirish.
-57k^{4}+42k^{2}+20-5=0
Ikkala tarafdan 5 ni ayirish.
-57k^{4}+42k^{2}+15=0
15 olish uchun 20 dan 5 ni ayirish.
-57t^{2}+42t+15=0
k^{2} uchun t ni almashtiring.
t=\frac{-42±\sqrt{42^{2}-4\left(-57\right)\times 15}}{-57\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun -57 ni, b uchun 42 ni va c uchun 15 ni ayiring.
t=\frac{-42±72}{-114}
Hisoblarni amalga oshiring.
t=-\frac{5}{19} t=1
t=\frac{-42±72}{-114} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
k=1 k=-1
k=t^{2} boʻlganda, yechimlar musbat t uchun k=±\sqrt{t} hisoblanishi orqali olinadi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}